2019-03-28 11:29:48 +01:00
# include <stdint.h>
# include <stdlib.h>
# include "DFT8Turbo.h"
# include <math.h>
# include <stdio.h>
2019-04-28 07:49:35 +02:00
# define MAX_FREQS (8)
# define OCTAVES (4)
2019-03-28 11:29:48 +01:00
2019-04-28 07:49:35 +02:00
//Right now, we need 8*freqs*octaves bytes.
//This is bad.
//What can we do to fix it?
//4x the hits (sin/cos and we need to do it once for each edge)
//8x for selecting a higher octave.
# define FREQREBASE 8.0
2019-04-27 09:23:07 +02:00
# define TARGFREQ 8000.0
2019-03-28 11:29:48 +01:00
2019-04-29 00:11:35 +02:00
/* Tradeoff guide:
* We will optimize for RAM size here .
* If you weight the bins in advance , you can :
+ ) potentially use shallower bit depth but
- ) have to compute the multiply every time you update the bin .
* TODO : Investigate using all unsigned ( to make multiply and / or 12 - bit storage easier )
*/
2019-03-28 11:29:48 +01:00
/*
* The first thought was using an integration map and only operating when we need to , to pull the data out .
* Now we ' re doing the thing below this block comment
int16_t accumulated_total ; //2 bytes
int16_t last_accumulated_total_at_bin [ MAX_FREQS * 2 ] ; //24 * 2 * sizeof(int16_t) = 96 bytes.
uint8_t current_time ; //1 byte
uint8_t placecode [ MAX_FREQS ] ;
*/
2019-04-20 10:05:05 +02:00
/*
So , the idea here is we would keep a running total of the current ADC value , kept away in a int16_t .
It is constantly summing , so we can take an integral of it . Or rather an integral range .
Over time , we perform operations like adding or subtracting from a current place .
2019-03-28 11:29:48 +01:00
*/
2019-04-27 09:23:07 +02:00
//These live in RAM.
2019-04-20 10:05:05 +02:00
int16_t running_integral ;
2019-04-28 07:49:35 +02:00
int16_t integral_at [ MAX_FREQS * OCTAVES * 2 ] ; //THIS CAN BE COMPRESSED.
2019-04-29 00:11:35 +02:00
int32_t cossindata [ MAX_FREQS * OCTAVES * 2 ] ; //Contains COS and SIN data. (32-bit for now, will be 16-bit, potentially even 8.)
2019-04-27 09:23:07 +02:00
uint8_t which_octave_for_op [ MAX_FREQS ] ; //counts up, tells you which ocative you are operating on. PUT IN RAM.
2019-03-28 11:29:48 +01:00
2019-04-27 09:23:07 +02:00
# define NR_OF_OPS (4<<OCTAVES)
//Format is:
// 255 = DO NOT OPERATE
// bits 0..3 unfolded octave, i.e. sin/cos are offset by one.
// bit 4 = add or subtract.
uint8_t optable [ NR_OF_OPS ] ; //PUT IN FLASH
2019-03-28 11:29:48 +01:00
2019-04-27 09:23:07 +02:00
# define ACTIONTABLESIZE 256
2019-04-28 07:49:35 +02:00
uint8_t actiontable [ ACTIONTABLESIZE ] ; //PUT IN FLASH // If there are more than 8 freqbins, this must be a uint16_t, otherwise if more than 16, 32.
2019-04-27 09:23:07 +02:00
uint8_t actiontableplace ;
//Format is
2019-03-28 11:29:48 +01:00
2019-04-29 00:11:35 +02:00
uint8_t mulmux [ MAX_FREQS * OCTAVES ] ; //PUT IN FLASH
2019-03-28 11:29:48 +01:00
static int Setup ( float * frequencies , int bins )
{
int i ;
2019-04-20 10:05:05 +02:00
printf ( " BINS: %d \n " , bins ) ;
2019-04-29 00:11:35 +02:00
float highestf = frequencies [ bins - 1 ] ;
for ( i = 0 ; i < bins ; i + + )
{
mulmux [ i ] = ( uint8_t ) ( highestf / frequencies [ i ] * 255 + 0.5 ) ;
printf ( " MM: %d %f / %f \n " , mulmux [ i ] , frequencies [ i ] , highestf ) ;
}
//exit(0);
2019-04-20 10:05:05 +02:00
for ( i = bins - MAX_FREQS ; i < bins ; i + + )
2019-03-28 11:29:48 +01:00
{
2019-04-20 10:05:05 +02:00
int topbin = i - ( bins - MAX_FREQS ) ;
2019-04-28 07:49:35 +02:00
float f = frequencies [ i ] / FREQREBASE ;
2019-04-20 10:05:05 +02:00
float hits_per_table = ( float ) ACTIONTABLESIZE / f ;
int dhrpertable = ( int ) ( hits_per_table + .5 ) ; //TRICKY: You might think you need to have even number of hits (sin/cos), but you don't! It can flip sin/cos each time through the table!
2019-04-27 09:23:07 +02:00
float err = ( TARGFREQ / ( ( float ) ACTIONTABLESIZE / dhrpertable ) - ( float ) TARGFREQ / f ) / ( ( float ) TARGFREQ / f ) ;
2019-04-20 10:05:05 +02:00
//Perform an op every X samples. How well does this map into units of 1024?
2019-04-27 09:23:07 +02:00
printf ( " %d %f -> hits per %d: %f %d (%.2f%% error) \n " , topbin , f , ACTIONTABLESIZE , ( float ) ACTIONTABLESIZE / f , dhrpertable , err * 100.0 ) ;
2019-04-28 07:49:35 +02:00
if ( dhrpertable > = ACTIONTABLESIZE )
{
fprintf ( stderr , " Error: Too many hits. \n " ) ;
exit ( 0 ) ;
}
2019-04-20 10:05:05 +02:00
float advance_per_step = dhrpertable / ( float ) ACTIONTABLESIZE ;
float fvadv = 0.0 ;
int j ;
int countset = 0 ;
//XXX TODO Tricky: We need to start fadv off at such a place that there won't be a hicchup when going back around to 0.
for ( j = 0 ; j < ACTIONTABLESIZE ; j + + )
2019-03-28 11:29:48 +01:00
{
2019-04-20 10:05:05 +02:00
if ( fvadv > = 0.5 )
{
actiontable [ j ] | = 1 < < topbin ;
fvadv - = 1.0 ;
countset + + ;
}
fvadv + = advance_per_step ;
2019-03-28 11:29:48 +01:00
}
2019-04-20 10:05:05 +02:00
printf ( " countset: %d \n " , countset ) ;
2019-03-28 11:29:48 +01:00
}
2019-04-27 09:23:07 +02:00
int phaseinop [ OCTAVES ] = { 0 } ;
2019-04-29 00:11:35 +02:00
int already_hit_octaveplace [ OCTAVES * 2 ] = { 0 } ;
2019-04-27 09:23:07 +02:00
for ( i = 0 ; i < NR_OF_OPS ; i + + )
2019-04-20 10:05:05 +02:00
{
int longestzeroes = 0 ;
2019-04-27 09:23:07 +02:00
int val = i & ( ( 1 < < OCTAVES ) - 1 ) ;
for ( longestzeroes = 0 ; longestzeroes < 255 & & ( ( ( val > > longestzeroes ) & 1 ) = = 0 ) ; longestzeroes + + ) ;
2019-04-20 10:05:05 +02:00
//longestzeroes goes: 255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ...
2019-04-27 09:23:07 +02:00
//This isn't great, because we need to also know whether we are attacking the SIN side or the COS side, and if it's + or -.
//We can actually decide that out.
2019-03-28 11:29:48 +01:00
2019-04-27 09:23:07 +02:00
if ( longestzeroes = = 255 )
{
//This is a nop. Emit a nop.
2019-04-29 00:11:35 +02:00
optable [ i ] = 255 ;
2019-04-27 09:23:07 +02:00
}
else
{
2019-04-28 07:49:35 +02:00
longestzeroes = OCTAVES - 1 - longestzeroes ; //Actually do octave 0 least often.
2019-04-27 09:23:07 +02:00
int iop = phaseinop [ longestzeroes ] + + ;
2019-04-29 00:11:35 +02:00
int toop = ( longestzeroes < < 1 ) | ( iop & 1 ) ;
//if it's the first time an octave happened this set, flag it. This may be used later in the process.
if ( ! already_hit_octaveplace [ toop ] )
{
already_hit_octaveplace [ toop ] = 1 ;
toop | = 1 < < 5 ;
}
//Handle add/subtract bit.
if ( iop & 2 ) toop | = 1 < < 4 ;
optable [ i ] = toop ;
2019-04-28 07:49:35 +02:00
//printf( " %d %d %d\n", iop, val, longestzeroes );
2019-04-27 09:23:07 +02:00
}
//printf( "HBT: %d = %d\n", i, optable[i] );
}
2019-04-28 07:49:35 +02:00
//exit(1);
2019-03-28 11:29:48 +01:00
2019-04-27 09:23:07 +02:00
return 0 ;
2019-03-28 11:29:48 +01:00
}
2019-04-27 09:23:07 +02:00
#if 0
2019-04-20 10:05:05 +02:00
int16_t running_integral ;
2019-04-27 09:23:07 +02:00
int16_t integral_at [ MAX_FREQS * OCTAVES ] ;
int16_t cossindata [ MAX_FREQS * OCTAVES * 2 ] ; //Contains COS and SIN data.
uint8_t which_octave_for_op [ MAX_FREQS ] ; //counts up, tells you which ocative you are operating on. PUT IN RAM.
2019-03-28 11:29:48 +01:00
2019-04-27 09:23:07 +02:00
# define NR_OF_OPS (4<<OCTAVES)
//Format is:
// 255 = DO NOT OPERATE
// bits 0..3 unfolded octave, i.e. sin/cos are offset by one.
// bit 4 = add or subtract.
uint8_t optable [ NR_OF_OPS ] ; //PUT IN FLASH
2019-03-28 11:29:48 +01:00
2019-04-27 09:23:07 +02:00
# define ACTIONTABLESIZE 256
uint32_t actiontable [ ACTIONTABLESIZE ] ; //PUT IN FLASH
//Format is
# endif
2019-03-28 11:29:48 +01:00
void Turbo8BitRun ( int8_t adcval )
{
2019-04-29 00:11:35 +02:00
running_integral + = adcval > > 2 ;
2019-04-27 09:23:07 +02:00
# define dprintf( ... )
uint32_t action = actiontable [ actiontableplace + + ] ;
int n ;
dprintf ( " %4d " , actiontableplace ) ;
for ( n = 0 ; n < MAX_FREQS ; n + + )
{
if ( action & ( 1 < < n ) )
{
int ao = which_octave_for_op [ n ] ;
int op = optable [ ao ] ;
ao + + ;
if ( ao > = NR_OF_OPS ) ao = 0 ;
which_octave_for_op [ n ] = ao ;
if ( op = = 255 )
{
dprintf ( " * " ) ; //NOP
}
else
{
int octaveplace = op & 0xf ;
2019-04-28 07:49:35 +02:00
int idx = ( octaveplace > > 1 ) * MAX_FREQS * 2 + n * 2 + ( octaveplace & 1 ) ;
2019-04-27 09:23:07 +02:00
2019-04-28 07:49:35 +02:00
//int invoct = OCTAVES-1-octaveplace;
2019-04-27 09:23:07 +02:00
int16_t diff ;
if ( op & 0x10 ) //ADD
{
2019-04-28 07:49:35 +02:00
diff = integral_at [ idx ] - running_integral ;
2019-04-27 09:23:07 +02:00
dprintf ( " %c " , ' a ' + octaveplace ) ;
}
else //SUBTRACT
{
2019-04-28 07:49:35 +02:00
diff = running_integral - integral_at [ idx ] ;
2019-04-27 09:23:07 +02:00
dprintf ( " %c " , ' A ' + octaveplace ) ;
}
2019-04-29 00:11:35 +02:00
2019-04-28 07:49:35 +02:00
if ( diff > 256 | | diff < - 256 ) printf ( " %d \n " , diff ) ;
integral_at [ idx ] = running_integral ;
//if( n == 1 ) printf( "%d %d %d %d\n", n, idx, diff, op & 0x10 );
2019-04-27 09:23:07 +02:00
//dprintf( "%d\n", idx );
2019-04-29 00:11:35 +02:00
#if 0
//Apply IIR operation 1; This is rough because the Q changes and goes higher as a function of frequency. This is probably a bad move.
cossindata [ idx ] + = diff > > 4 ;
if ( op & 0x20 )
{
cossindata [ idx ] = cossindata [ idx ]
- ( cossindata [ idx ] > > 2 ) ;
}
# else
//Apply IIR.
//printf( "%d: %d + %d * %d >> 8 - %d\n", idx, cossindata[idx], diff, mulmux[idx/2], cossindata[idx]>>4 );
cossindata [ idx ] = cossindata [ idx ]
+ ( ( ( int32_t ) diff * ( int32_t ) mulmux [ idx / 2 ] ) > > 6 )
- ( cossindata [ idx ] > > 4 )
;
// if( cossindata[idx] > 2047 ) cossindata[idx] = 2047;
// if( cossindata[idx] < -2048 ) cossindata[idx] = -2048;
# endif
2019-04-28 07:49:35 +02:00
// if( cossindata[idx] > 1 ) cossindata[idx]--;
// if( cossindata[idx] < -1 ) cossindata[idx]++;
// if( cossindata[idx] > 16 ) cossindata[idx]-=8;
// if( cossindata[idx] < -16 ) cossindata[idx]+=8;
2019-04-27 09:23:07 +02:00
}
}
else
{
dprintf ( " " ) ;
}
}
dprintf ( " \n " ) ;
#if 0
2019-04-20 10:05:05 +02:00
uint32_t actions = * ( placeintable + + ) ;
if ( placeintable = = & actiontable [ ACTIONTABLESIZE ] ) placeintable = actiontable ;
int b ;
for ( b = 0 ; b < MAX_FREQS ; b + + )
2019-03-28 11:29:48 +01:00
{
2019-04-20 10:05:05 +02:00
if ( ! ( ( 1 < < b ) & actions ) ) continue ;
//If we get here, we need to do an action.
int op = which_octave_for_op [ b ] + + ;
int sinorcos = op & 1 ;
op > > = 1 ;
int octavebit = op & ( ( 1 < < OCTAVES ) - 1 ) ;
if ( ! octavebit ) { continue ; } //XXX TRICKY: In our octavebit table, we have 1 0 and 1 1 entry. 2, 3, 4, etc. are ok. So, if we hit a 0, we abort.
int whichoctave = highbit_table [ octavebit ] ;
//Ok, actually we need to also know whether you're on SIN or COS.
//if( b == 0 ) printf( "%d\n", whichoctave );
//XXX TODO Optimization: Use a table, since octavebit can only be 0...31.
2019-03-28 11:29:48 +01:00
}
2019-04-27 09:23:07 +02:00
# endif
2019-03-28 11:29:48 +01:00
}
void DoDFT8BitTurbo ( float * outbins , float * frequencies , int bins , const float * databuffer , int place_in_data_buffer , int size_of_data_buffer , float q , float speedup )
{
static int is_setup ;
if ( ! is_setup ) { is_setup = 1 ; Setup ( frequencies , bins ) ; }
static int last_place ;
int i ;
for ( i = last_place ; i ! = place_in_data_buffer ; i = ( i + 1 ) % size_of_data_buffer )
{
int16_t ifr1 = ( int16_t ) ( ( ( databuffer [ i ] ) ) * 4095 ) ;
2019-04-07 12:47:58 +02:00
Turbo8BitRun ( ifr1 > > 5 ) ; //6 = Actually only feed algorithm numbers from -64 to 63.
2019-03-28 11:29:48 +01:00
}
2019-04-07 12:47:58 +02:00
last_place = place_in_data_buffer ;
2019-03-28 11:29:48 +01:00
2019-04-28 07:49:35 +02:00
static int idiv ;
idiv + + ;
2019-04-27 09:23:07 +02:00
# if 1
2019-03-28 11:29:48 +01:00
for ( i = 0 ; i < bins ; i + + )
{
outbins [ i ] = 0 ;
}
2019-04-28 07:49:35 +02:00
for ( i = 0 ; i < bins ; i + + )
2019-03-28 11:29:48 +01:00
{
2019-04-28 07:49:35 +02:00
int iss = cossindata [ i * 2 + 0 ] > > 8 ;
int isc = cossindata [ i * 2 + 1 ] > > 8 ;
int issdiv = 0 ;
int iscdiv = 0 ;
int FWDOFFSET = 19 ; //MAX_FREQS*3/2;
if ( i < bins - FWDOFFSET )
{
issdiv = cossindata [ ( i + FWDOFFSET ) * 2 + 0 ] / 256 ;
iscdiv = cossindata [ ( i + FWDOFFSET ) * 2 + 1 ] / 256 ;
}
2019-03-28 11:29:48 +01:00
int mux = iss * iss + isc * isc ;
2019-04-28 07:49:35 +02:00
int muxdiv = issdiv * issdiv + iscdiv * iscdiv ;
//if( (idiv % 100) > 50 ) { printf( "*" ); mux -= muxdiv; }
//mux -= muxdiv;
if ( mux < = 0 )
{
outbins [ i ] = 0 ;
}
else
{
//if( i == 0 )
//printf( "MUX: %d %d = %d\n", isc, iss, mux );
2019-04-29 00:11:35 +02:00
outbins [ i ] = sqrt ( ( float ) mux ) / 50.0 ;
2019-04-28 07:49:35 +02:00
if ( abs ( cossindata [ i * 2 + 0 ] ) > 1000 | | abs ( cossindata [ i * 2 + 1 ] ) > 1000 )
printf ( " %d/%d/%d/%f " , i , cossindata [ i * 2 + 0 ] , cossindata [ i * 2 + 1 ] , outbins [ i ] ) ;
//outbins[i] = (cossindata[i*2+0]/10000.0);
}
2019-03-28 11:29:48 +01:00
}
2019-04-28 07:49:35 +02:00
printf ( " \n " ) ;
2019-04-20 10:05:05 +02:00
# endif
2019-03-28 11:29:48 +01:00
}