colorchord/embeddedcommon/DFT8Turbo.c

170 lines
5 KiB
C
Raw Normal View History

2019-03-28 11:29:48 +01:00
#include <stdint.h>
#include <stdlib.h>
#include "DFT8Turbo.h"
#include <math.h>
#include <stdio.h>
#define MAX_FREQS (24)
#define OCTAVES (5)
/*
* The first thought was using an integration map and only operating when we need to, to pull the data out.
* Now we're doing the thing below this block comment
int16_t accumulated_total; //2 bytes
int16_t last_accumulated_total_at_bin[MAX_FREQS*2]; //24 * 2 * sizeof(int16_t) = 96 bytes.
uint8_t current_time; //1 byte
uint8_t placecode[MAX_FREQS];
*/
/*
So, the idea here is we would keep a running total of the current ADC value, kept away in a int16_t.
It is constantly summing, so we can take an integral of it. Or rather an integral range.
Over time, we perform operations like adding or subtracting from a current place.
2019-03-28 11:29:48 +01:00
NOTE:
Optimizations:
Only use 16 bins, lets action table be 16-bits wide.
2019-03-28 11:29:48 +01:00
*/
int16_t running_integral;
int16_t cossindata[MAX_FREQS*OCTAVES*2]; //Contains COS and SIN data.
2019-03-28 11:29:48 +01:00
uint8_t which_octave_for_op[MAX_FREQS]; //counts up, tells you which ocative you are operating on.
uint8_t highbit_table[2<<OCTAVES]; //PUT IN FLASH
2019-03-28 11:29:48 +01:00
#define ACTIONTABLESIZE 512
2019-03-28 11:29:48 +01:00
uint16_t * placeintable;
2019-03-28 11:29:48 +01:00
//Put this in flash.
uint32_t actiontable[ACTIONTABLESIZE];
2019-03-28 11:29:48 +01:00
static int Setup( float * frequencies, int bins )
{
int i;
printf( "BINS: %d\n", bins );
for( i = bins-MAX_FREQS; i < bins; i++ )
2019-03-28 11:29:48 +01:00
{
int topbin = i - (bins-MAX_FREQS);
float f = frequencies[i]/2.0; //2x the hits (sin/cos)
float hits_per_table = (float)ACTIONTABLESIZE/f;
int dhrpertable = (int)(hits_per_table+.5);//TRICKY: You might think you need to have even number of hits (sin/cos), but you don't! It can flip sin/cos each time through the table!
float err = (8000./((float)ACTIONTABLESIZE/dhrpertable) - 8000./f)/(8000./f);
//Perform an op every X samples. How well does this map into units of 1024?
printf( "%d %f -> hits per 1024: %f %d (%f error)\n", topbin, f, (float)ACTIONTABLESIZE/f, dhrpertable, err * 100.0 );
float advance_per_step = dhrpertable/(float)ACTIONTABLESIZE;
float fvadv = 0.0;
int j;
int actions = 0;
int countset = 0;
//XXX TODO Tricky: We need to start fadv off at such a place that there won't be a hicchup when going back around to 0.
for( j = 0; j < ACTIONTABLESIZE; j++ )
2019-03-28 11:29:48 +01:00
{
if( fvadv >= 0.5 )
{
actiontable[j] |= 1<<topbin;
fvadv -= 1.0;
countset++;
}
fvadv += advance_per_step;
2019-03-28 11:29:48 +01:00
}
printf( " countset: %d\n", countset );
2019-03-28 11:29:48 +01:00
}
for( i = 0; i < (1<<OCTAVES); i++ )
{
int longestzeroes = 0;
for( longestzeroes = 0; longestzeroes < 255 && ( ((i >> longestzeroes) & 1) == 0 ); longestzeroes++ );
//longestzeroes goes: 255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ...
//This isn't great, because we need to also know whether we are attacking the SIN side or the COS side.
highbit_table[i] = longestzeroes;
}
//Repeat the highbit table in the second half.
//XXX PICK UP HERE
//Encode into highbit_table which cell is being operated on
//Also, do the * MAX_FREQS here. That will
2019-03-28 11:29:48 +01:00
placeintable = actiontable;
// for( i = 0; i < ACTIONTABLESIZE; i++ ) printf( "%08x\n", actiontable[i] );
2019-03-28 11:29:48 +01:00
}
int16_t running_integral;
int16_t cossindata[MAX_FREQS*OCTAVES*2];
uint8_t which_octave_for_op[MAX_FREQS]; //counts up, tells you which ocative you are operating on.
uint16_t * placeintable;
2019-03-28 11:29:48 +01:00
//Put this in flash.
uint32_t actiontable[ACTIONTABLESIZE];
2019-03-28 11:29:48 +01:00
void Turbo8BitRun( int8_t adcval )
{
uint32_t actions = *(placeintable++);
if( placeintable == &actiontable[ACTIONTABLESIZE] ) placeintable = actiontable;
int b;
for( b = 0; b < MAX_FREQS; b++ )
2019-03-28 11:29:48 +01:00
{
if( ! ((1<<b) & actions) ) continue;
//If we get here, we need to do an action.
int op = which_octave_for_op[b]++;
int sinorcos = op & 1;
op >>= 1;
int octavebit = op & ((1<<OCTAVES)-1);
if( !octavebit ) { continue; } //XXX TRICKY: In our octavebit table, we have 1 0 and 1 1 entry. 2, 3, 4, etc. are ok. So, if we hit a 0, we abort.
int whichoctave = highbit_table[octavebit];
//Ok, actually we need to also know whether you're on SIN or COS.
//if( b == 0 ) printf( "%d\n", whichoctave );
//XXX TODO Optimization: Use a table, since octavebit can only be 0...31.
2019-03-28 11:29:48 +01:00
}
}
void DoDFT8BitTurbo( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup )
{
static int is_setup;
if( !is_setup ) { is_setup = 1; Setup( frequencies, bins ); }
static int last_place;
int i;
for( i = last_place; i != place_in_data_buffer; i = (i+1)%size_of_data_buffer )
{
int16_t ifr1 = (int16_t)( ((databuffer[i]) ) * 4095 );
Turbo8BitRun( ifr1>>5 ); //6 = Actually only feed algorithm numbers from -64 to 63.
2019-03-28 11:29:48 +01:00
}
last_place = place_in_data_buffer;
2019-03-28 11:29:48 +01:00
#if 0
2019-03-28 11:29:48 +01:00
for( i = 0; i < bins; i++ )
{
outbins[i] = 0;
}
for( i = 0; i < MAX_FREQS; i++ )
{
int iss = nd[i].sinm>>8;
int isc = nd[i].cosm>>8;
2019-03-28 11:29:48 +01:00
int mux = iss * iss + isc * isc;
if( mux == 0 ) mux = 1;
if( i == 0 )
printf( "MUX: %d %d\n", isc, iss );
outbins[i+MAX_FREQS] = sqrt(mux)/200.0;
2019-03-28 11:29:48 +01:00
}
#endif
2019-03-28 11:29:48 +01:00
}