Compare commits

..

14 commits

Author SHA1 Message Date
cnlohr 1012c467d8 making progress. reworking as I go. 2019-06-18 05:43:17 -04:00
cnlohr fa186adaef add the paduk thing currently broken. 2019-04-29 03:30:43 -04:00
cnlohr 15951d3128 ok. 8turbo's base is good. 2019-04-29 02:16:24 -04:00
cnlohr cd56e249bc 8turbo is really turning into a real 8turbo 2019-04-29 01:28:52 -04:00
cnlohr 1432f22b77 Switch over to making 8Turbo *actually* turbo. 2019-04-29 00:04:28 -04:00
cnlohr 8677baebd3 Further checkpoint - before optable rework 2019-04-28 21:08:37 -04:00
cnlohr 16fa4a9c42 Closing in. 2019-04-28 18:53:45 -04:00
cnlohr 36c8d8a94f First commit before we try to do a modified-square-wave kernel. 2019-04-28 18:11:35 -04:00
cnlohr 56c0af05c1 **Use this as reference point 1** Ok, this is actually pretty solid. 2019-04-28 01:49:35 -04:00
cnlohr e8e96d7d01 IT IS DOING A DFT 2019-04-27 17:34:22 -04:00
cnlohr 21398bf6c6 working on 8bit turbo 2019-04-27 03:23:07 -04:00
cnlohr 0a056db03d try another method for turbo operations. 2019-04-20 01:05:05 -07:00
cnlohr 0d23075125 progress on turbo8. Still not working - also new algebra problem found. 2019-04-07 03:47:58 -07:00
cnlohr b9dc46c701 First inroads to turbo8 2019-03-28 06:29:48 -04:00
24 changed files with 1575 additions and 224 deletions

View file

@ -27,7 +27,6 @@ struct HIDAPIOutDriver
int is_rgby; int is_rgby;
int bank_size[4]; int bank_size[4];
int bank_id[4]; int bank_id[4];
int do_write_method;
}; };
@ -50,74 +49,13 @@ static void * LEDOutThread( void * v )
} }
printf( "\n" ); printf( "\n" );
*/ */
if( led->do_write_method ) int r = hid_send_feature_report( led->devh, led->last_leds, total_bytes );
if( r < 0 )
{ {
static int rk; led->did_init = 0;
printf( "Fault sending LEDs.\n" );
int panel = 0;
for( panel = 0; panel < 9; panel++ )
{
uint8_t hidbuf[66];
memset( hidbuf, 0x00, 65 );
hidbuf[0] = panel;
int i;
int tled = panel;
if( led->do_write_method == 2 )
{
for( i = 0; i < 16; i++ )
{
int wled = i * 3;
tled = panel * 16 + i;
hidbuf[wled+2] = OutLEDs[tled*3+1];
hidbuf[wled+3] = OutLEDs[tled*3+0];
hidbuf[wled+4] = OutLEDs[tled*3+2];
}
}
else
{
for( i = 0; i < 16; i++ )
{
int wled = i * 3;
hidbuf[wled+2] = OutLEDs[tled*3+1];
hidbuf[wled+3] = OutLEDs[tled*3+0];
hidbuf[wled+4] = OutLEDs[tled*3+2];
}
}
rk += 0x80;
hidbuf[0] = 0;
hidbuf[1] = panel;
int r;
#if 0
for( i = 0; i < 64; i++ )
{
printf( "%02x ", hidbuf[i] );
}
printf( "\n" ); fflush( stdout );
#endif
// printf( "." ); fflush( stdout );
r = hid_write( led->devh, hidbuf, 64 );
//usleep(1000);
if( r < 0 )
{
led->did_init = 0;
printf( "Fault sending LEDs.\n" );
}
}
}
else
{
int r = hid_send_feature_report( led->devh, led->last_leds, total_bytes );
if( r < 0 )
{
led->did_init = 0;
printf( "Fault sending LEDs.\n" );
}
} }
led->readyFlag = 0; led->readyFlag = 0;
printf( "." ); fflush( stdout );
} }
OGUSleep(100); OGUSleep(100);
} }
@ -134,17 +72,8 @@ static void LEDUpdate(void * id, struct NoteFinder*nf)
{ {
led->did_init = 1; led->did_init = 1;
hid_init(); hid_init();
if( led->do_write_method ) led->devh = hid_open( 0xabcd, 0xf104, 0 );
{
//Impulse
led->devh = hid_open( 0x0483, 0x5750, 0 );
}
else
{
//My dingus.
led->devh = hid_open( 0xabcd, 0xf104, 0 );
}
if( !led->devh ) if( !led->devh )
{ {
@ -288,7 +217,6 @@ static void LEDParams(void * id )
led->bank_id[1] = 0; RegisterValue( "bank2_id", PAINT, &led->bank_id[1], sizeof( led->bank_id[1] ) ); led->bank_id[1] = 0; RegisterValue( "bank2_id", PAINT, &led->bank_id[1], sizeof( led->bank_id[1] ) );
led->bank_id[2] = 0; RegisterValue( "bank3_id", PAINT, &led->bank_id[2], sizeof( led->bank_id[2] ) ); led->bank_id[2] = 0; RegisterValue( "bank3_id", PAINT, &led->bank_id[2], sizeof( led->bank_id[2] ) );
led->bank_id[3] = 0; RegisterValue( "bank4_id", PAINT, &led->bank_id[3], sizeof( led->bank_id[3] ) ); led->bank_id[3] = 0; RegisterValue( "bank4_id", PAINT, &led->bank_id[3], sizeof( led->bank_id[3] ) );
led->do_write_method = 0; RegisterValue( "do_write_method", PAINT, &led->do_write_method, sizeof( led->do_write_method ) );
led->did_init = 0; led->did_init = 0;
} }

View file

@ -17,7 +17,7 @@ LDLIBS:=-lpthread -lasound -lm -lpulse-simple -lpulse -ludev -lrt
CFLAGS:=-g -O0 -flto -Wall -ffast-math -I../embeddedcommon -I. -DICACHE_FLASH_ATTR= CFLAGS:=-g -O0 -flto -Wall -ffast-math -I../embeddedcommon -I. -DICACHE_FLASH_ATTR=
EXTRALIBS:=-lusb-1.0 EXTRALIBS:=-lusb-1.0
colorchord : os_generic.o main.o dft.o decompose.o filter.o color.o notefinder.o util.o outdrivers.o $(RAWDRAW) $(SOUND) $(OUTS) parameters.o chash.o hook.o ../embeddedcommon/DFT32.o configs.o colorchord : os_generic.o main.o dft.o decompose.o filter.o color.o notefinder.o util.o outdrivers.o $(RAWDRAW) $(SOUND) $(OUTS) parameters.o chash.o hook.o ../embeddedcommon/DFT32.o configs.o ../embeddedcommon/DFT8Turbo.o ../embeddedcommon/DFT8Padauk.o
gcc -o $@ $^ $(CFLAGS) $(LDLIBS) $(EXTRALIBS) $(RAWDRAWLIBS) gcc -o $@ $^ $(CFLAGS) $(LDLIBS) $(EXTRALIBS) $(RAWDRAWLIBS)
@ -26,4 +26,4 @@ colorchord.exe : os_generic.c main.c dft.c decompose.c filter.c color.c notefin
clean : clean :
rm -rf *.o *~ colorchord colorchord.exe embeddedcc rm -rf *.o *~ ../embeddedcommon/*.o colorchord colorchord.exe embeddedcc

Binary file not shown.

View file

@ -58,8 +58,9 @@ octaves = 5
# 1 = DFT Progressive # 1 = DFT Progressive
# 2 = DFT Progressive Integer # 2 = DFT Progressive Integer
# 3 = DFT Progressive Integer Skippy # 3 = DFT Progressive Integer Skippy
# 4 = Integer, 32-Bit, Progressive, Skippy. # 4 = Integer, 32-Bit, Progressive, Skippy. (wow, this actually works)
do_progressive_dft = 4 # 5 = 8-bit turbo test.
do_progressive_dft = 5
filter_iter = 2 filter_iter = 2

View file

@ -1,37 +0,0 @@
This is a vornoi thing:
outdrivers = DisplayArray, OutputCells, DisplayHIDAPI
lightx = 12
lighty = 12
leds = 144
fromsides = 0
shape_cutoff = 0.00
satamp = 5.000
amppow = 2.510
distpow = 1.500
light_siding = 1.9
samplerate = 11025
buffer = 64
#sourcename = default
sourcename = alsa_output.pci-0000_00_1f.3.analog-stereo.monitor
#default
do_write_method = 2
amplify = 2.5
note_attach_amp_iir = 0.9000
note_attach_amp_iir2 = 0.550
note_attach_freq_iir = 0.9000
dft_iir = .6
dft_q = 20.0000
dft_speedup = 1000.0000
note_jumpability = 1.0000
#skittlequantity = 24
timebased = 1
snakey=0
qtyamp = 160

View file

@ -54,6 +54,7 @@ float cpu_autolimit_interval = 0.016; REGISTER_PARAM( cpu_autolimit_interval, P
int sample_channel = -1;REGISTER_PARAM( sample_channel, PAINT ); int sample_channel = -1;REGISTER_PARAM( sample_channel, PAINT );
int showfps = 0; REGISTER_PARAM( showfps, PAINT ); int showfps = 0; REGISTER_PARAM( showfps, PAINT );
float in_amplitude = 1; REGISTER_PARAM( in_amplitude, PAFLOAT ); float in_amplitude = 1; REGISTER_PARAM( in_amplitude, PAFLOAT );
int shim_sinewave = 0; REGISTER_PARAM( shim_sinewave, PAINT );
struct NoteFinder * nf; struct NoteFinder * nf;
@ -96,6 +97,9 @@ void HandleMotion( int x, int y, int mask )
void SoundCB( float * out, float * in, int samplesr, int * samplesp, struct SoundDriver * sd ) void SoundCB( float * out, float * in, int samplesr, int * samplesp, struct SoundDriver * sd )
{ {
static og_sema_t tss;
if( !tss ) tss = OGCreateSema();
else OGLockSema( tss );
int channelin = sd->channelsRec; int channelin = sd->channelsRec;
// int channelout = sd->channelsPlay; // int channelout = sd->channelsPlay;
//*samplesp = 0; //*samplesp = 0;
@ -106,53 +110,90 @@ void SoundCB( float * out, float * in, int samplesr, int * samplesp, struct Soun
int i; int i;
int j; int j;
for( i = 0; i < samplesr; i++ ) if( out )
{ {
if( out ) for( i = 0; i < samplesr; i++ )
{ {
for( j = 0; j < channelin; j++ ) for( j = 0; j < channelin; j++ )
{ {
out[i*channelin+j] = 0; out[i*channelin+j] = 0;
} }
} }
}
if( sample_channel < 0 ) if( shim_sinewave )
{ {
float fo = 0; static double sinplace;
for( j = 0; j < channelin; j++ ) static double sinfreq = 0;
{ static int msp;
float f = in[i*channelin+j];
if( f >= -1 && f <= 1 )
{
fo += f;
}
else
{
fo += (f>0)?1:-1;
// printf( "Sound fault A %d/%d %d/%d %f\n", j, channelin, i, samplesr, f );
}
}
fo /= channelin; for( i = 0; i < samplesr; i++ )
sound[soundhead] = fo*in_amplitude;
soundhead = (soundhead+1)%SOUNDCBSIZE;
}
else
{ {
float f = in[i*channelin+sample_channel]; sinfreq = 3.14159 * 2 * 110 * pow( 2, 5.0/12 ) / 16000;
// sinfreq += .000001;
// if( sinfreq > .2 ) sinfreq = 0;
sinplace += sinfreq;
if( sinplace > (3.14159*2) ) sinplace -= 3.14159 * 2;
msp++;
float f = sin( sinplace );
//if( msp % 20000 > 10000 ) f = 0;
if( f > 1 || f < -1 ) if( f > 1 || f < -1 )
{ {
f = (f>0)?1:-1; f = (f>0)?1:-1;
} }
//printf( "Sound fault B %d/%d\n", i, samplesr ); //printf( "Sound fault B %d/%d\n", i, samplesr );
sound[soundhead] = f*in_amplitude; sound[soundhead] = f*in_amplitude;
soundhead = (soundhead+1)%SOUNDCBSIZE; soundhead = (soundhead+1)%SOUNDCBSIZE;
} }
} }
else
{
if( sample_channel < 0 )
{
for( i = 0; i < samplesr; i++ )
{
float fo = 0;
for( j = 0; j < channelin; j++ )
{
float f = in[i*channelin+j];
if( f >= -1 && f <= 1 )
{
fo += f;
}
else
{
fo += (f>0)?1:-1;
// printf( "Sound fault A %d/%d %d/%d %f\n", j, channelin, i, samplesr, f );
}
}
fo /= channelin;
sound[soundhead] = fo*in_amplitude;
soundhead = (soundhead+1)%SOUNDCBSIZE;
}
}
else
{
for( i = 0; i < samplesr; i++ )
{
float f = in[i*channelin+sample_channel];
if( f > 1 || f < -1 )
{
f = (f>0)?1:-1;
}
//printf( "Sound fault B %d/%d\n", i, samplesr );
sound[soundhead] = f*in_amplitude;
soundhead = (soundhead+1)%SOUNDCBSIZE;
}
}
}
SoundEventHappened( samplesr, in, 0, channelin ); SoundEventHappened( samplesr, in, 0, channelin );
if( out ) if( out )
@ -160,6 +201,8 @@ void SoundCB( float * out, float * in, int samplesr, int * samplesp, struct Soun
SoundEventHappened( samplesr, out, 1, sd->channelsPlay ); SoundEventHappened( samplesr, out, 1, sd->channelsPlay );
} }
*samplesp = samplesr; *samplesp = samplesr;
OGUnlockSema( tss );
} }
int main(int argc, char ** argv) int main(int argc, char ** argv)

View file

@ -11,6 +11,8 @@
#include "filter.h" #include "filter.h"
#include "decompose.h" #include "decompose.h"
#include "DFT32.h" #include "DFT32.h"
#include "DFT8Turbo.h"
#include "DFT8Padauk.h"
struct NoteFinder * CreateNoteFinder( int spsRec ) struct NoteFinder * CreateNoteFinder( int spsRec )
{ {
@ -199,6 +201,12 @@ void RunNoteFinder( struct NoteFinder * nf, const float * audio_stream, int head
case 4: case 4:
DoDFTProgressive32( dftbins, nf->frequencies, freqs, audio_stream, head, buffersize, nf->dft_q, nf->dft_speedup ); DoDFTProgressive32( dftbins, nf->frequencies, freqs, audio_stream, head, buffersize, nf->dft_q, nf->dft_speedup );
break; break;
case 5:
DoDFT8BitTurbo( dftbins, nf->frequencies, freqs, audio_stream, head, buffersize, nf->dft_q, nf->dft_speedup );
break;
case 6:
DoDFT8BitPadauk( dftbins, nf->frequencies, freqs, audio_stream, head, buffersize, nf->dft_q, nf->dft_speedup );
break;
default: default:
fprintf( stderr, "Error: No DFT Seleced\n" ); fprintf( stderr, "Error: No DFT Seleced\n" );
} }

View file

@ -0,0 +1,95 @@
# This is the configuration file for colorchord.
# Most values are already defaulted in the software.
# This file is constantly checked for new versions.
# \r, and ; are used as terminators, so you can put
# multiple entries on the same line.
#Whether to limit the control loop to ~60ish FPS.
cpu_autolimit = 1
#General GUI properties.
title = PA Test
set_screenx = 720
set_screeny = 480
#Sound properties.
buffer = 384
play = 0
rec = 1
channels = 2
# THis matters for CC Turbo8
# What is the base note? I.e. the lowest note.
# Note that it won't have very much impact until an octave up though!
#These two are carefully selected. You should pick a base note such that it fully saturates the sample frequency.
#10000 / 2^4{octaves} / 8
base_hz = 82.41
samplerate = 10000
freqbins = 12
octaves = 4
do_progressive_dft=6
slope = 0
wininput = -1
#Compiled version will default this.
#sound_source = ALSA
#-1 indicates left and right, 0 left, 1 right.
sample_channel = -1
sourcename = default
#alsa_output.pci-0000_00_1f.3.analog-stereo.monitor
#default
# alsa_output.pci-0000_00_1b.0.analog-stereo.monitor
#alsa_output.pci-0000_00_1f.3.analog-stereo.monitor << New laptop
#use pactl list | grep pci- | grep monitor
##################################
# General ColorChord properties. #
##################################
# How much to amplify the incoming signal.
amplify = 2.0
# This is only used when dealing with the slow decompose (now defunct)
# decompose_iterations = 1000
# default_sigma = 1.4000
# For the final note information... How much to slack everything?
note_attach_amp_iir = 0.3500
note_attach_amp_iir2 = 0.250
note_attach_freq_iir = 0.3000
#How many bins a note can jump from frame to frame to be considered a slide.
#this is used to prevent notes from popping in and out a lot.
note_combine_distance = 0.5000
note_jumpability = 1.8000
note_minimum_new_distribution_value = 0.0200
note_out_chop = 0.05000
#compress_coefficient = 4.0
#compress_exponent = .5
#=======================================================================
#Outputs
shim_sinewave = 0
This is a vornoi thing:
outdrivers = OutputVoronoi, DisplayArray
lightx = 64
lighty = 32
fromsides = 1
shape_cutoff = 0.03
satamp = 5.000
amppow = 2.510
distpow = 1.500

View file

@ -18,11 +18,6 @@ Unfortunately the I2S Out (WS2812 in) pin is the same as RX1 (pin 25), which mea
The audio data is taken from TOUT, but must be kept between 0 and 1V. The audio data is taken from TOUT, but must be kept between 0 and 1V.
An option that has been thurroughly tested is for use with the 2019 MAGFest Swadge. https://github.com/cnlohr/swadge2019
Audio portion:
![Audio portion of schematic](https://raw.githubusercontent.com/cnlohr/swadge2019/master/hardware/swadge2019_schematic_audio.png)
## Notes ## Notes
./makeconf.inc has a few variables that Make uses for building and flashing the firmware. ./makeconf.inc has a few variables that Make uses for building and flashing the firmware.

View file

@ -6,9 +6,9 @@
#define HPABUFFSIZE 512 #define HPABUFFSIZE 512
#define CCEMBEDDED #define CCEMBEDDED
#define NUM_LIN_LEDS 16 #define NUM_LIN_LEDS 541
#define DFREQ 16000 #define DFREQ 16000
#define LUXETRON 0
#define memcpy ets_memcpy #define memcpy ets_memcpy
#define memset ets_memset #define memset ets_memset

@ -1 +1 @@
Subproject commit a08b47184b3fcf04172ecc0b6a1aee9c90e5d92d Subproject commit 113e0d1a182cd138510f748abf2854c0e84cfa23

View file

@ -34,7 +34,7 @@ Extra copyright info:
*******************************************************************************/ *******************************************************************************/
#include <ccconfig.h>
#include "slc_register.h" #include "slc_register.h"
#include "esp82xxutil.h" #include "esp82xxutil.h"
#include <c_types.h> #include <c_types.h>
@ -45,8 +45,9 @@ Extra copyright info:
//Creates an I2S SR of 93,750 Hz, or 3 MHz Bitclock (.333us/sample) //Creates an I2S SR of 93,750 Hz, or 3 MHz Bitclock (.333us/sample)
// 12000000L/(div*bestbck*2) // 12000000L/(div*bestbck*2)
//It is likely you could speed this up a little. //It is likely you could speed this up a little.
#define LUXETRON
#if LUXETRON == 1 #ifdef LUXETRON
#define INVERT #define INVERT
#define WS_I2S_BCK 14 #define WS_I2S_BCK 14
#define WS_I2S_DIV 5 #define WS_I2S_DIV 5
@ -455,10 +456,10 @@ static const uint16_t bitpatterns[16] = {
#elif defined(WS2812_FOUR_SAMPLE) #elif defined(WS2812_FOUR_SAMPLE)
#ifdef INVERT #ifdef INVERT
static const uint16_t bitpatterns[16] = { static const uint16_t bitpatterns[16] = {
0b0111011101110111, 0b0111011101110011, 0b0111011100110111, 0b0111011100110011, ~0b1000100010001000, ~0b1000100010001100, ~0b1000100011001000, ~0b1000100011001100,
0b0111001101110111, 0b0111001101110011, 0b0111001100110111, 0b0111001100110011, ~0b1000110010001000, ~0b1000110010001100, ~0b1000110011001000, ~0b1000110011001100,
0b0011011101110111, 0b0011011101110011, 0b0011011100110111, 0b0011011100110011, ~0b1100100010001000, ~0b1100100010001100, ~0b1100100011001000, ~0b1100100011001100,
0b0011001101110111, 0b0011001101110011, 0b0011000100110111, 0b0011001100110011, ~0b1100110010001000, ~0b1100110010001100, ~0b1100111011001000, ~0b1100110011001100,
}; };
#else #else
//Tricky, send out WS2812 bits with coded pulses, one nibble, then the other. //Tricky, send out WS2812 bits with coded pulses, one nibble, then the other.

346
embeddedcommon/DFT12Small.c Normal file
View file

@ -0,0 +1,346 @@
//NOTE DO NOT EDIT THIS FILE WITHOUT ALSO EDITING DFT8TURBO!!!
#include <stdint.h>
#include <stdlib.h>
#include "DFT12Small.h"
#include <math.h>
#include <stdio.h>
#define MAX_FREQS (12)
#define OCTAVES (4)
/*
General procedure - use this code, with uint16_t or uint32_t buffers, and make sure none of the alarms go off.
All of the paths still require no more than an 8-bit multiply.
You should test with extreme cases, like square wave sweeps in, etc.
*/
//#define TWELVEBIT
#define EIGHTBIT
#ifdef TWELVEBIT
//No larger than 12-bit signed values for integration or sincos
#define FRONTEND_AMPLITUDE (0)
#define INITIAL_DECIMATE (2)
#define INTEGRATOR_DECIMATE (8)
#define FINAL_DECIMATE (4)
#elif defined( EIGHTBIT )
//No larger than 8-bit signed values for integration or sincos
#define FRONTEND_AMPLITUDE (2)
#define INITIAL_DECIMATE (5) //Yurgh... only 3 bits of ADC data. That's 8 unique levels :(
#define INTEGRATOR_DECIMATE (8)
#define FINAL_DECIMATE (1)
#endif
//4x the hits (sin/cos and we need to do it once for each edge)
//8x for selecting a higher octave.
#define FREQREBASE 8.0
#define TARGFREQ 10000.0
/* Tradeoff guide:
* We will optimize for RAM size here.
* INITIAL_DECIMATE; A larger decimation: {NOTE 1}
+) Reduces the bit depth needed for the integral map.
If you use "1" and a fully saturted map (highest note is every sample), it will not overflow a signed 12-bit number.
-) Increases noise.
With full-scale: 0->1 minimal 1->2 minimal 2->3 significantly noticable, 3->4 major.
If sound is quieter, it matters more. Not sure with other changes in system. (2) seems ok.
-) If you make it (1) or (0) You can't do an 8-bit multiply and keep the output in a signed range.
Also, other things, like frequency of hits can manipulate the maximum bit depth needed for integral map.
* If you weight the bins in advance see "mulmux", you can: {NOTE 2}
+) potentially use shallower bit depth but
-) have to compute the multiply every time you update the bin.
* You can use a modified-square-wave which only integrates for 1/2 of the duty cycle. {NOTE 3}
+) uses 1/2 the integral memory.
-) Not as pretty of an output. See "integral_at"
*TODO: Investigate using all unsigned (to make multiply and/or 12-bit storage easier)
*TODO: Consider a mode which has 16-bit integrals, but still 8-bit cossin data.
So, the idea here is we would keep a running total of the current ADC value, kept away in a int16_t.
It is constantly summing, so we can take an integral of it. Or rather an integral range.
Over time, we perform operations like adding or subtracting from a current place. It basically is
a DFT where the kernel is computed using square waves (or modified square waves)
*/
//These live in RAM.
int16_t running_integral; //Realistically treat as 12-bits on ramjet8
int16_t integral_at[MAX_FREQS*OCTAVES]; //For ramjet8, make 12-bits
int32_t cossindata[MAX_FREQS*OCTAVES*2]; //Contains COS and SIN data. (32-bit for now, will be 16-bit, potentially even 8.)
uint8_t which_octave_for_op[MAX_FREQS]; //counts up, tells you which ocative you are operating on. PUT IN RAM.
uint8_t actiontableplace;
#define NR_OF_OPS (4<<OCTAVES)
//Format is:
// 255 = DO NOT OPERATE
// bits 0..3 unfolded octave, i.e. sin/cos are offset by one.
// bit 4 = add or subtract.
uint8_t optable[NR_OF_OPS]; //PUT IN FLASH
#define ACTIONTABLESIZE 256
uint16_t actiontable[ACTIONTABLESIZE]; //PUT IN FLASH // If there are more than 8 freqbins, this must be a uint16_t, otherwise if more than 16, 32.
//Format is
uint8_t mulmux[MAX_FREQS]; //PUT IN FLASH
static int Setup( float * frequencies, int bins )
{
int i;
printf( "BINS: %d\n", bins );
float highestf = frequencies[MAX_FREQS-1];
for( i = 0; i < MAX_FREQS; i++ )
{
mulmux[i] = (uint8_t)( highestf / frequencies[i] * 255 + 0.5 );
printf( "MM: %d %f / %f\n", mulmux[i], frequencies[i], highestf );
}
for( i = bins-MAX_FREQS; i < bins; i++ )
{
int topbin = i - (bins-MAX_FREQS);
float f = frequencies[i]/FREQREBASE;
float hits_per_table = (float)ACTIONTABLESIZE/f;
int dhrpertable = (int)(hits_per_table+.5);//TRICKY: You might think you need to have even number of hits (sin/cos), but you don't! It can flip sin/cos each time through the table!
float err = (TARGFREQ/((float)ACTIONTABLESIZE/dhrpertable) - (float)TARGFREQ/f)/((float)TARGFREQ/f);
//Perform an op every X samples. How well does this map into units of 1024?
printf( "%d %f -> hits per %d: %f %d (%.2f%% error)\n", topbin, f, ACTIONTABLESIZE, (float)ACTIONTABLESIZE/f, dhrpertable, err * 100.0 );
if( dhrpertable >= ACTIONTABLESIZE )
{
fprintf( stderr, "Error: Too many hits.\n" );
exit(0);
}
float advance_per_step = dhrpertable/(float)ACTIONTABLESIZE;
float fvadv = 0.5;
int j;
int countset = 0;
//Tricky: We need to start fadv off at such a place that there won't be a hicchup when going back around to 0.
// I believe this is done by setting fvadv to 0.5 initially. Unsure.
for( j = 0; j < ACTIONTABLESIZE; j++ )
{
if( fvadv >= 0.5 )
{
actiontable[j] |= 1<<topbin;
fvadv -= 1.0;
countset++;
}
fvadv += advance_per_step;
}
printf( " countset: %d\n", countset );
}
//exit(1);
int phaseinop[OCTAVES] = { 0 };
int already_hit_octaveplace[OCTAVES*2] = { 0 };
for( i = 0; i < NR_OF_OPS; i++ )
{
int longestzeroes = 0;
int val = i & ((1<<OCTAVES)-1);
for( longestzeroes = 0; longestzeroes < 255 && ( ((val >> longestzeroes) & 1) == 0 ); longestzeroes++ );
//longestzeroes goes: 255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ...
//This isn't great, because we need to also know whether we are attacking the SIN side or the COS side, and if it's + or -.
//We can actually decide that out.
if( longestzeroes == 255 )
{
//This is a nop. Emit a nop.
optable[i] = 255;
}
else
{
longestzeroes = OCTAVES-1-longestzeroes; //Actually do octave 0 least often.
int iop = phaseinop[longestzeroes]++;
int toop = longestzeroes;
int toopmon = (longestzeroes<<1) | (iop & 1);
//if it's the first time an octave happened this set, flag it. This may be used later in the process.
if( !already_hit_octaveplace[toopmon] )
{
already_hit_octaveplace[toopmon] = 1;
toop |= 1<<5;
}
if( iop & 1 )
{
toop |= 1<<6;
}
//Handle add/subtract bit.
if( iop & 2 ) toop |= 1<<4;
optable[i] = toop;
//printf( " %d %d %d\n", iop, val, longestzeroes );
}
//printf( "HBT: %d = %d\n", i, optable[i] );
}
//exit(1);
return 0;
}
void Small12BitRun( int8_t adcval )
{
int16_t adcv = adcval;
adcv *= FRONTEND_AMPLITUDE;
if( adcv > 127 ) adcv = 127;
if( adcv < -128 ) adcv = -128;
running_integral += adcv>>INITIAL_DECIMATE;
uint32_t action = actiontable[actiontableplace++];
int n;
for( n = 0; n < MAX_FREQS; n++, action>>=1 )
{
if( !( action & 1 ) ) continue;
int ao = which_octave_for_op[n];
ao++;
if( ao >= NR_OF_OPS ) ao = 0;
which_octave_for_op[n] = ao;
int op = optable[ao];
if( op == 255 )
continue;
//int octaveplace = op & 0xf;
//Tricky: We share the integral with SIN and COS.
//We don't need to. It would produce a slightly cleaner signal. See: NOTE 3
uint8_t octave = op & 0xf;
uint8_t intindex = octave * MAX_FREQS + n;
//int invoct = OCTAVES-1-octaveplace;
int16_t diff;
if( op & 0x10 ) //ADD
{
diff = integral_at[intindex] - running_integral;
}
else //SUBTRACT
{
diff = running_integral - integral_at[intindex];
}
integral_at[intindex] = running_integral;
#ifdef TWELVEBIT
if( diff > 2000 || diff < -2000 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
#elif defined( EIGHTBIT )
if( diff > 124 || diff < -124 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
#endif
//uint8_t idx = ( intindex << 1 );
intindex<<=1;
if( op&(1<<6) )
{
intindex |= 1;
}
//printf( "%d: %d + %d * %d >> 8 - %d\n", intindex, cossindata[intindex], diff, mulmux[intindex/2], cossindata[intindex]>>4 );
uint8_t mulmuxval = mulmux[n];
//Do you live on a super lame processor? {NOTE 4}
//If you do, you might not have good signed multiply operations. So, an alternative mechanism is found here.
// +) Able to more cleanly crush to an 8-bit multiply.
// +) Gets extra bit of precision back, i.e. the sign bit is now used as a data bit.
// -) More than 1 line of C code. Requires possible double invert.
#if 1
//Terrible processor, i.e. PMS133
if( 0 && diff < 0 )
{
diff *= -1;
diff >>= (OCTAVES-1-octave);
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
diff = (uint16_t)diff * (uint16_t)mulmuxval;
diff >>= INTEGRATOR_DECIMATE;
diff *= -1;
}
else
{
diff >>= (OCTAVES-1-octave);
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
diff = (uint16_t)diff * (uint16_t)mulmuxval;
diff >>= INTEGRATOR_DECIMATE;
}
#else
//Decent processor, i.e. ATTiny85.
diff = ((diff>>(OCTAVES-1-octave)) * mulmuxval ) >> 6;
#endif
cossindata[intindex] = cossindata[intindex]
+ diff
- (cossindata[intindex]>>4)
;
#ifdef EIGHTBIT
if( cossindata[intindex] > 0 ) cossindata[intindex]--;
if( cossindata[intindex] < 0 ) cossindata[intindex]++;
#endif
}
}
void DoDFT12BitSmall( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup )
{
static int is_setup;
if( !is_setup ) { is_setup = 1; Setup( frequencies, bins ); }
static int last_place;
int i;
for( i = last_place; i != place_in_data_buffer; i = (i+1)%size_of_data_buffer )
{
int16_t ifr1 = (int16_t)( ((databuffer[i]) ) * 4095 );
Small12BitRun( ifr1>>5 ); //5 = Actually only feed algorithm numbers from -128 to 127.
}
last_place = place_in_data_buffer;
static int idiv;
idiv++;
#if 1
for( i = 0; i < bins; i++ )
{
int iss = cossindata[i*2+0]>>FINAL_DECIMATE;
int isc = cossindata[i*2+1]>>FINAL_DECIMATE;
int mux = iss * iss + isc * isc;
if( mux <= 0 )
{
outbins[i] = 0;
}
else
{
outbins[i] = sqrt((float)mux)/50.0;
#ifdef TWELVEBIT
if( abs( cossindata[i*2+0] ) > 1000 || abs( cossindata[i*2+1] ) > 1000 )
printf( "CS OVF %d/%d/%d/%f\n", i, cossindata[i*2+0], cossindata[i*2+1],outbins[i] );
#elif defined( EIGHTBIT )
if( abs( cossindata[i*2+0] ) > 120 || abs( cossindata[i*2+1] ) > 120 )
printf( "CS OVF %d/%d/%d/%f\n", i, cossindata[i*2+0], cossindata[i*2+1],outbins[i] );
#endif
}
}
#endif
}

View file

@ -0,0 +1,9 @@
#ifndef _DFT8TURBO_H
#define _DFT8TURBO_H
/* Note: Frequencies must be precompiled. */
void DoDFT12BitSmall( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup );
#endif

View file

@ -87,10 +87,10 @@ int main()
uint16_t Sdatspace32A[FIXBINS*2]; //(advances,places) full revolution is 256. 8bits integer part 8bit fractional uint16_t Sdatspace32A[FIXBINS*2]; //(advances,places)
int32_t Sdatspace32B[FIXBINS*2]; //(isses,icses) int32_t Sdatspace32B[FIXBINS*2]; //(isses,icses)
//This is updated every time the DFT hits the octavecount, or 1 out of (1<<OCTAVES) times which is (1<<(OCTAVES-1)) samples //This is updated every time the DFT hits the octavecount, or 1/32 updates.
int32_t Sdatspace32BOut[FIXBINS*2]; //(isses,icses) int32_t Sdatspace32BOut[FIXBINS*2]; //(isses,icses)
//Sdo_this_octave is a scheduling state for the running SIN/COS states for //Sdo_this_octave is a scheduling state for the running SIN/COS states for
@ -107,9 +107,6 @@ static uint8_t Swhichoctaveplace;
uint16_t embeddedbins[FIXBINS]; uint16_t embeddedbins[FIXBINS];
//From: http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2 //From: http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2
// for sqrt approx but also suggestion for quick norm approximation that would work in this DFT
#if APPROXNORM != 1
/** /**
* \brief Fast Square root algorithm, with rounding * \brief Fast Square root algorithm, with rounding
* *
@ -160,7 +157,6 @@ static uint16_t SquareRootRounded(uint32_t a_nInput)
return res; return res;
} }
#endif
void UpdateOutputBins32() void UpdateOutputBins32()
{ {
@ -168,38 +164,26 @@ void UpdateOutputBins32()
int32_t * ipt = &Sdatspace32BOut[0]; int32_t * ipt = &Sdatspace32BOut[0];
for( i = 0; i < FIXBINS; i++ ) for( i = 0; i < FIXBINS; i++ )
{ {
int32_t isps = *(ipt++); //keep 32 bits int16_t isps = *(ipt++)>>16;
int32_t ispc = *(ipt++); int16_t ispc = *(ipt++)>>16;
// take absolute values
isps = isps<0? -isps : isps;
ispc = ispc<0? -ispc : ispc;
int octave = i / FIXBPERO; int octave = i / FIXBPERO;
//If we are running DFT32 on regular ColorChord, then we will need to //If we are running DFT32 on regular ColorChord, then we will need to
//also update goutbins[]... But if we're on embedded systems, we only //also update goutbins[]... But if we're on embedded systems, we only
//update embeddedbins32. //update embeddedbins32.
#ifndef CCEMBEDDED #ifndef CCEMBEDDED
// convert 32 bit precision isps and ispc to floating point uint32_t mux = ( (isps) * (isps)) + ((ispc) * (ispc));
float mux = ( (float)isps * (float)isps) + ((float)ispc * (float)ispc); goutbins[i] = sqrtf( (float)mux );
goutbins[i] = sqrtf(mux)/65536.0; // scale by 2^16 //reasonable (but arbitrary amplification)
//reasonable (but arbitrary attenuation)
goutbins[i] /= (78<<DFTIIR)*(1<<octave); goutbins[i] /= (78<<DFTIIR)*(1<<octave);
#endif #endif
#if APPROXNORM == 1 uint32_t rmux = ( (isps) * (isps)) + ((ispc) * (ispc));
// using full 32 bit precision for isps and ispc
uint32_t rmux = isps>ispc? isps + (ispc>>1) : ispc + (isps>>1);
rmux = rmux>>16; // keep most significant 16 bits
#else
// use the most significant 16 bits of isps and ispc when squaring
// since isps and ispc are non-negative right bit shifing is well defined
uint32_t rmux = ( (isps>>16) * (isps>>16)) + ((ispc>16) * (ispc>>16));
rmux = SquareRootRounded( rmux );
#endif
//bump up all outputs here, so when we nerf it by bit shifting by //bump up all outputs here, so when we nerf it by bit shifting by
//octave we don't lose a lot of detail. //ctave we don't lose a lot of detail.
rmux = rmux << 1; rmux = SquareRootRounded( rmux ) << 1;
embeddedbins32[i] = rmux >> octave; embeddedbins32[i] = rmux >> octave;
} }
@ -210,24 +194,16 @@ static void HandleInt( int16_t sample )
int i; int i;
uint16_t adv; uint16_t adv;
uint8_t localipl; uint8_t localipl;
int16_t filteredsample;
uint8_t oct = Sdo_this_octave[Swhichoctaveplace]; uint8_t oct = Sdo_this_octave[Swhichoctaveplace];
Swhichoctaveplace ++; Swhichoctaveplace ++;
Swhichoctaveplace &= BINCYCLE-1; Swhichoctaveplace &= BINCYCLE-1;
for( i = 0; i < OCTAVES;i++ )
{
Saccum_octavebins[i] += sample;
}
if( oct > 128 ) if( oct > 128 )
{ {
//Special: This is when we can update everything. //Special: This is when we can update everything.
//This gets run once out of every (1<<OCTAVES) times. //This gets run one out of every 1/(1<<OCTAVES) times.
// which is half as many samples
//It handles updating part of the DFT. //It handles updating part of the DFT.
//It should happen at the very first call to HandleInit
int32_t * bins = &Sdatspace32B[0]; int32_t * bins = &Sdatspace32B[0];
int32_t * binsOut = &Sdatspace32BOut[0]; int32_t * binsOut = &Sdatspace32BOut[0];
@ -245,11 +221,16 @@ static void HandleInt( int16_t sample )
return; return;
} }
// process a filtered sample for one of the octaves
for( i = 0; i < OCTAVES;i++ )
{
Saccum_octavebins[i] += sample;
}
uint16_t * dsA = &Sdatspace32A[oct*FIXBPERO*2]; uint16_t * dsA = &Sdatspace32A[oct*FIXBPERO*2];
int32_t * dsB = &Sdatspace32B[oct*FIXBPERO*2]; int32_t * dsB = &Sdatspace32B[oct*FIXBPERO*2];
filteredsample = Saccum_octavebins[oct]>>(OCTAVES-oct); sample = Saccum_octavebins[oct]>>(OCTAVES-oct);
Saccum_octavebins[oct] = 0; Saccum_octavebins[oct] = 0;
for( i = 0; i < FIXBPERO; i++ ) for( i = 0; i < FIXBPERO; i++ )
@ -258,10 +239,10 @@ static void HandleInt( int16_t sample )
localipl = *(dsA) >> 8; localipl = *(dsA) >> 8;
*(dsA++) += adv; *(dsA++) += adv;
*(dsB++) += (Ssinonlytable[localipl] * filteredsample); *(dsB++) += (Ssinonlytable[localipl] * sample);
//Get the cosine (1/4 wavelength out-of-phase with sin) //Get the cosine (1/4 wavelength out-of-phase with sin)
localipl += 64; localipl += 64;
*(dsB++) += (Ssinonlytable[localipl] * filteredsample); *(dsB++) += (Ssinonlytable[localipl] * sample);
} }
} }
@ -271,12 +252,11 @@ int SetupDFTProgressive32()
int j; int j;
Sdonefirstrun = 1; Sdonefirstrun = 1;
Sdo_this_octave[0] = 0xff;
for( i = 0; i < BINCYCLE-1; i++ ) for( i = 0; i < BINCYCLE; i++ )
{ {
// Sdo_this_octave = // Sdo_this_octave =
// 255 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 0 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 is case for 5 octaves. // 4 3 4 2 4 3 4 ...
// Initial state is special one, then at step i do octave = Sdo_this_octave with averaged samples from last update of that octave
//search for "first" zero //search for "first" zero
for( j = 0; j <= OCTAVES; j++ ) for( j = 0; j <= OCTAVES; j++ )
@ -291,7 +271,7 @@ int SetupDFTProgressive32()
#endif #endif
return -1; return -1;
} }
Sdo_this_octave[i+1] = OCTAVES-j-1; Sdo_this_octave[i] = OCTAVES-j-1;
} }
return 0; return 0;
} }
@ -300,12 +280,10 @@ int SetupDFTProgressive32()
void UpdateBins32( const uint16_t * frequencies ) void UpdateBins32( const uint16_t * frequencies )
{ {
int i; int i;
int imod = 0; for( i = 0; i < FIXBINS; i++ )
for( i = 0; i < FIXBINS; i++, imod++ )
{ {
if (imod >= FIXBPERO) imod=0; uint16_t freq = frequencies[i%FIXBPERO];
uint16_t freq = frequencies[imod];
Sdatspace32A[i*2] = freq;// / oneoveroctave; Sdatspace32A[i*2] = freq;// / oneoveroctave;
} }
} }
@ -375,6 +353,3 @@ void DoDFTProgressive32( float * outbins, float * frequencies, int bins, const f
#endif #endif

View file

@ -20,13 +20,6 @@
//made here should be backported there as well. //made here should be backported there as well.
//You can # define these to be other things elsewhere. //You can # define these to be other things elsewhere.
// Will used simple approximation of norm rather than
// sum squares and approx sqrt
#ifndef APPROXNORM
#define APPROXNORM 1
#endif
#ifndef OCTAVES #ifndef OCTAVES
#define OCTAVES 5 #define OCTAVES 5
#endif #endif

360
embeddedcommon/DFT8Padauk.c Normal file
View file

@ -0,0 +1,360 @@
//NOTE DO NOT EDIT THIS FILE WITHOUT ALSO EDITING DFT12SMALL!!!
//WARNING: DFT8Turbo, DFT12Small is currently the only one that's actually working.
//THIS FILE DOES NOT CURRENTLY WORK.
#include <stdint.h>
#include <stdlib.h>
#include "DFT8Turbo.h"
#include <math.h>
#include <stdio.h>
#define MAX_FREQS (12)
#define OCTAVES (4)
/* Backporting notes:
* Change loop to only check if the output table says it's complete.
* Pre-multiply octaves in optable.
*/
/*
General procedure - use this code, with uint16_t or uint32_t buffers, and make sure none of the alarms go off.
All of the paths still require no more than an 8-bit multiply.
You should test with extreme cases, like square wave sweeps in, etc.
*/
//No larger than 8-bit signed values for integration or sincos
#define FRONTEND_AMPLITUDE (2)
#define INITIAL_DECIMATE (5) //Yurgh... only 3 bits of ADC data. That's 8 unique levels :(
#define INTEGRATOR_DECIMATE (8)
#define FINAL_DECIMATE (1)
#define OPTABLETYPE uint16_t //Make uint8_t if on attiny.
//4x the hits (sin/cos and we need to do it once for each edge)
//8x for selecting a higher octave.
#define FREQREBASE 8.0
#define TARGFREQ 10000.0
//These live in RAM.
int8_t running_integral; //Realistically treat as 12-bits on ramjet8
int8_t integral_at[MAX_FREQS*OCTAVES]; //For ramjet8, make 12-bits
int8_t cossindata[MAX_FREQS*OCTAVES*2]; //Contains COS and SIN data. (32-bit for now, will be 16-bit, potentially even 8.)
uint8_t which_octave_for_op[MAX_FREQS]; //counts up, tells you which ocative you are operating on. PUT IN RAM.
uint8_t actiontableplace;
#define NR_OF_OPS (4<<OCTAVES) /*64*/
//Format is:
// 255 = DO NOT OPERATE
// bits 0..4 = which octave
// bit 5 = even or odd (sin or cos) [UNUSED]
// bit 6 = reset
// bit 7 = add or subtract.
// bits 8..15 = octave base offset.
OPTABLETYPE optable[NR_OF_OPS]; //PUT IN FLASH
#define ACTIONTABLESIZE 256
uint16_t actiontable[ACTIONTABLESIZE]; //PUT IN FLASH // If there are more than 8 freqbins, this must be a uint16_t, otherwise if more than 16, 32.
//Format is
OPTABLETYPE mulmux[MAX_FREQS]; //PUT IN FLASH
static int Setup( float * frequencies, int bins )
{
int i;
printf( "BINS: %d\n", bins );
float highestf = frequencies[MAX_FREQS-1];
for( i = 0; i < MAX_FREQS; i++ )
{
mulmux[i] = (uint8_t)( highestf / frequencies[i] * 255 + 0.5 );
printf( "MM: %d %f / %f\n", mulmux[i], frequencies[i], highestf );
}
for( i = bins-MAX_FREQS; i < bins; i++ )
{
int topbin = i - (bins-MAX_FREQS);
float f = frequencies[i]/FREQREBASE;
float hits_per_table = (float)ACTIONTABLESIZE/f;
int dhrpertable = (int)(hits_per_table+.5);//TRICKY: You might think you need to have even number of hits (sin/cos), but you don't! It can flip sin/cos each time through the table!
float err = (TARGFREQ/((float)ACTIONTABLESIZE/dhrpertable) - (float)TARGFREQ/f)/((float)TARGFREQ/f);
//Perform an op every X samples. How well does this map into units of 1024?
printf( "%d %f -> hits per %d: %f %d (%.2f%% error)\n", topbin, f, ACTIONTABLESIZE, (float)ACTIONTABLESIZE/f, dhrpertable, err * 100.0 );
if( dhrpertable >= ACTIONTABLESIZE )
{
fprintf( stderr, "Error: Too many hits.\n" );
exit(0);
}
float advance_per_step = dhrpertable/(float)ACTIONTABLESIZE;
float fvadv = 0.5;
int j;
int countset = 0;
//Tricky: We need to start fadv off at such a place that there won't be a hicchup when going back around to 0.
// I believe this is done by setting fvadv to 0.5 initially. Unsure.
for( j = 0; j < ACTIONTABLESIZE; j++ )
{
if( fvadv >= 0.5 )
{
actiontable[j] |= 1<<(MAX_FREQS-1-topbin); //XXX-DEPARTURE (reversing the table symbols)
fvadv -= 1.0;
countset++;
}
fvadv += advance_per_step;
}
printf( " countset: %d\n", countset );
}
//exit(1);
int phaseinop[OCTAVES] = { 0 };
int already_hit_octaveplace[OCTAVES*2] = { 0 };
for( i = 0; i < NR_OF_OPS; i++ )
{
int longestzeroes = 0;
int val = i & ((1<<OCTAVES)-1);
for( longestzeroes = 0; longestzeroes < 255 && ( ((val >> longestzeroes) & 1) == 0 ); longestzeroes++ );
//longestzeroes goes: 255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ...
//This isn't great, because we need to also know whether we are attacking the SIN side or the COS side, and if it's + or -.
//We can actually decide that out.
if( longestzeroes == 255 )
{
//This is a nop. Emit a nop.
optable[i] = 65535;
}
else
{
longestzeroes = OCTAVES-1-longestzeroes; //Actually do octave 0 least often.
int iop = phaseinop[longestzeroes]++;
int toop = longestzeroes;
int toopmon = (longestzeroes<<1) | (iop & 1);
//if it's the first time an octave happened this set, flag it. This may be used later in the process.
if( !already_hit_octaveplace[toopmon] )
{
already_hit_octaveplace[toopmon] = 1;
toop |= 1<<5;
}
if( iop & 1 )
{
toop |= 1<<6;
}
//Handle add/subtract bit.
if( iop & 2 ) toop |= 1<<4;
optable[i] = toop | ((longestzeroes*MAX_FREQS*2+(iop & 1))<<8);
//printf( " %d %d %d\n", iop, val, longestzeroes );
}
//printf( "HBT: %d = %d\n", i, optable[i] );
}
//exit(1);
return 0;
}
static uint16_t action;
static uint8_t note;
static uint8_t * memptr;
static uint16_t * romptr;
static uint8_t op;
static uint8_t note_offset; //Offset of current note.
static uint8_t octave;
static uint8_t intindex;
static int8_t diff;
static uint8_t tmp;
void Padauk8BitRun( int8_t adcval )
{
int16_t adcv = adcval;
adcv *= FRONTEND_AMPLITUDE;
if( adcv > 127 ) adcv = 127;
if( adcv < -128 ) adcv = -128;
running_integral += adcv>>INITIAL_DECIMATE;
uint8_t acc;
uint8_t * accM;
uint8_t mul2;
action = actiontable[actiontableplace++];
//Counts are approximate counts for PMS133
for( note = MAX_FREQS;
note; //1CYC/PAIRED
note--, //1CYC/PAIRED (dzsn)
action>>=1 //2CYC (slc x2)
)
{
//Everything inside this loop is executed ~3/4 * MAX_FREQS per audio sample. so.. ~9x.
//If op @ 4MHz, we get 44 cycles in here. I don't think we can do it.
//If no operation is scheduled, continue.
if( !( action & 1 ) ) continue; //1CYC
accM = which_octave_for_op - 1; //1CYC
accM = accM + note; //1CYC
//accM now points to the memory address containing which step we're on.
//We can use that to figure out which octave we should operate with.
memptr = accM; //1CYC
acc = *memptr; //2CYC (idxm)
acc++; //1CYC
//acc now contains the actual place we are indexing off of.
//If it overflows, be sure to reset it.
if( acc == NR_OF_OPS+1 )
{
acc = 1;
continue;
}
//We then update the memory with the new data.
*memptr = acc; //2CYC (idxm)
//Now, we look up in optable what we're supposed to do.
accM = ((uint8_t*)optable) + acc*2; //1CYC -> ROM dad is stored in word pairs.
romptr = (uint16_t*)accM; //1CYC
acc = *romptr; //2CYC (ldtabl)
//If we are on the one operation we aren't supposed to operate within, we should cancel and loop around.
//XXX XXX XXX XXX XXX This is wrong. We should probably handle this logic above.
//XXX XXX XXX XXX XXX Logic handled above. XXX PICK UP HERE!!!
printf( "+ %d %d %d\n", note, acc, *memptr );
//if( acc == 255 ) //2CYC
//{
// //This way, when we loop back around, it will be at index 0, and everything should flow gracefully.
// *memptr = 255;
// continue;
//}
if( acc == 255 )
{
//We dun goofed.
fprintf( stderr, "Goofed.\n" );
exit( 0 );
}
//This actually reads the current octave specifier into "op"
//BIT7: add or subtract
//BIT6: reset
//BIT5: Even or odd?
//BITS 0..4 = Which octave.
op = acc; //1CYC
acc = (*romptr)>>8; //2CYC (ldtabh) -> Contains memory offset of which note to use.
note_offset = acc;
acc = acc + note; //1CYC
accM = (uint8_t*)integral_at-1 + acc; //1CYC
memptr = accM; //1CYC
acc = *memptr; //2CYC idxm
//acc now contains the running integral of the last time we were on this cell.
if( op & (1<<7) ) //ADD //2CYC
{
acc = acc - running_integral; //1CYC
}
else //SUBTRACT
{
tmp = acc; //1CYC
acc = running_integral; //1CYC
acc = acc - tmp; //1CYC
}
diff = acc; //1CYC
//Assume 2 extra cycles of overhead for if/else. //2 CYC
acc = running_integral; //1CYC
//Store the current running integral back into this note's running integral for next time.
*memptr = acc; //2CYC
// op = info about what op we're on. WARNING: Bitfield.
// diff = how much to add to current value.
// note_offset = index of current operative note position.
octave = op & 0x1f; //XXX TODO
printf( "%d %d %d %d\n", op, diff, note_offset, octave );
accM = (uint8_t*)(mulmux - 1); //1CYC
accM = accM + note*2; //1CYC
romptr = accM; //1CYC
acc = *romptr; //2CYC
mul2 = acc; //1CYC
if( diff < 0 ) //[2CYC] (t0sn on MSB)
{
diff *= -1; //[1CYC] (neg M)
diff >>= (OCTAVES-1-octave); // ???TRICKY??? Should this be a multiply?
//if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
diff = ((uint16_t)diff * (uint16_t)mul2)>>INTEGRATOR_DECIMATE; //[3CYC]
diff *= -1; //[1CYC]
}
else
{
diff >>= (OCTAVES-1-octave);
//if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
diff = ((uint16_t)diff * (uint16_t)mul2)>>INTEGRATOR_DECIMATE;
}
//@48 cycles :( :( :(
//printf( "%d\n", diff );
int8_t tmp =
cossindata[intindex] //[3CYC]
+ diff //[1CYC]
- (cossindata[intindex]>>4) //[2CYC]
;
if( tmp > 0 ) tmp--; //2CYC
if( tmp < 0 ) tmp++; //2CYC
cossindata[intindex] = tmp; //2CYC
//60ish cycles :( :( :(
}
}
void DoDFT8BitPadauk( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup )
{
static int is_setup;
if( !is_setup ) { is_setup = 1; Setup( frequencies, bins ); }
static int last_place;
int i;
for( i = last_place; i != place_in_data_buffer; i = (i+1)%size_of_data_buffer )
{
int16_t ifr1 = (int16_t)( ((databuffer[i]) ) * 4095 );
Padauk8BitRun( ifr1>>5 ); //5 = Actually only feed algorithm numbers from -128 to 127.
}
last_place = place_in_data_buffer;
static int idiv;
idiv++;
#if 1
for( i = 0; i < bins; i++ )
{
int iss = cossindata[i*2+0]>>FINAL_DECIMATE;
int isc = cossindata[i*2+1]>>FINAL_DECIMATE;
int mux = iss * iss + isc * isc;
if( mux <= 0 )
{
outbins[i] = 0;
}
else
{
outbins[i] = sqrt((float)mux)/50.0;
if( abs( cossindata[i*2+0] ) > 120 || abs( cossindata[i*2+1] ) > 120 )
printf( "CS OVF %d/%d/%d/%f\n", i, cossindata[i*2+0], cossindata[i*2+1],outbins[i] );
}
}
#endif
}

View file

@ -0,0 +1,9 @@
#ifndef _DFT8PADAUK_H
#define _DFT8PADAUK_H
/* Note: Frequencies must be precompiled. */
void DoDFT8BitPadauk( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup );
#endif

312
embeddedcommon/DFT8Turbo.c Normal file
View file

@ -0,0 +1,312 @@
//NOTE DO NOT EDIT THIS FILE WITHOUT ALSO EDITING DFT12SMALL!!!
#include <stdint.h>
#include <stdlib.h>
#include "DFT8Turbo.h"
#include <math.h>
#include <stdio.h>
#define MAX_FREQS (12)
#define OCTAVES (4)
/*
General procedure - use this code, with uint16_t or uint32_t buffers, and make sure none of the alarms go off.
All of the paths still require no more than an 8-bit multiply.
You should test with extreme cases, like square wave sweeps in, etc.
*/
//No larger than 8-bit signed values for integration or sincos
#define FRONTEND_AMPLITUDE (2)
#define INITIAL_DECIMATE (5) //Yurgh... only 3 bits of ADC data. That's 8 unique levels :(
#define INTEGRATOR_DECIMATE (8)
#define FINAL_DECIMATE (1)
#define OPTABLETYPE uint16_t //Make uint8_t if on attiny.
//4x the hits (sin/cos and we need to do it once for each edge)
//8x for selecting a higher octave.
#define FREQREBASE 8.0
#define TARGFREQ 10000.0
//These live in RAM.
int8_t running_integral; //Realistically treat as 12-bits on ramjet8
int8_t integral_at[MAX_FREQS*OCTAVES]; //For ramjet8, make 12-bits
int8_t cossindata[MAX_FREQS*OCTAVES*2]; //Contains COS and SIN data. (32-bit for now, will be 16-bit, potentially even 8.)
uint8_t which_octave_for_op[MAX_FREQS]; //counts up, tells you which ocative you are operating on. PUT IN RAM.
uint8_t actiontableplace;
#define NR_OF_OPS (4<<OCTAVES) /*64*/
//Format is:
// 255 = DO NOT OPERATE
// bits 0..3 unfolded octave, i.e. sin/cos are offset by one.
// bit 4 = add or subtract.
OPTABLETYPE optable[NR_OF_OPS]; //PUT IN FLASH
#define ACTIONTABLESIZE 256
uint16_t actiontable[ACTIONTABLESIZE]; //PUT IN FLASH // If there are more than 8 freqbins, this must be a uint16_t, otherwise if more than 16, 32.
//Format is
OPTABLETYPE mulmux[MAX_FREQS]; //PUT IN FLASH
static int Setup( float * frequencies, int bins )
{
int i;
printf( "BINS: %d\n", bins );
float highestf = frequencies[MAX_FREQS-1];
for( i = 0; i < MAX_FREQS; i++ )
{
mulmux[i] = (uint8_t)( highestf / frequencies[i] * 255 + 0.5 );
printf( "MM: %d %f / %f\n", mulmux[i], frequencies[i], highestf );
}
for( i = bins-MAX_FREQS; i < bins; i++ )
{
int topbin = i - (bins-MAX_FREQS);
float f = frequencies[i]/FREQREBASE;
float hits_per_table = (float)ACTIONTABLESIZE/f;
int dhrpertable = (int)(hits_per_table+.5);//TRICKY: You might think you need to have even number of hits (sin/cos), but you don't! It can flip sin/cos each time through the table!
float err = (TARGFREQ/((float)ACTIONTABLESIZE/dhrpertable) - (float)TARGFREQ/f)/((float)TARGFREQ/f);
//Perform an op every X samples. How well does this map into units of 1024?
printf( "%d %f -> hits per %d: %f %d (%.2f%% error)\n", topbin, f, ACTIONTABLESIZE, (float)ACTIONTABLESIZE/f, dhrpertable, err * 100.0 );
if( dhrpertable >= ACTIONTABLESIZE )
{
fprintf( stderr, "Error: Too many hits.\n" );
exit(0);
}
float advance_per_step = dhrpertable/(float)ACTIONTABLESIZE;
float fvadv = 0.5;
int j;
int countset = 0;
//Tricky: We need to start fadv off at such a place that there won't be a hicchup when going back around to 0.
// I believe this is done by setting fvadv to 0.5 initially. Unsure.
for( j = 0; j < ACTIONTABLESIZE; j++ )
{
if( fvadv >= 0.5 )
{
actiontable[j] |= 1<<topbin;
fvadv -= 1.0;
countset++;
}
fvadv += advance_per_step;
}
printf( " countset: %d\n", countset );
}
//exit(1);
int phaseinop[OCTAVES] = { 0 };
int already_hit_octaveplace[OCTAVES*2] = { 0 };
for( i = 0; i < NR_OF_OPS; i++ )
{
int longestzeroes = 0;
int val = i & ((1<<OCTAVES)-1);
for( longestzeroes = 0; longestzeroes < 255 && ( ((val >> longestzeroes) & 1) == 0 ); longestzeroes++ );
//longestzeroes goes: 255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ...
//This isn't great, because we need to also know whether we are attacking the SIN side or the COS side, and if it's + or -.
//We can actually decide that out.
if( longestzeroes == 255 )
{
//This is a nop. Emit a nop.
optable[i] = 255;
}
else
{
longestzeroes = OCTAVES-1-longestzeroes; //Actually do octave 0 least often.
int iop = phaseinop[longestzeroes]++;
int toop = longestzeroes;
int toopmon = (longestzeroes<<1) | (iop & 1);
//if it's the first time an octave happened this set, flag it. This may be used later in the process.
if( !already_hit_octaveplace[toopmon] )
{
already_hit_octaveplace[toopmon] = 1;
toop |= 1<<5;
}
if( iop & 1 )
{
toop |= 1<<6;
}
//Handle add/subtract bit.
if( iop & 2 ) toop |= 1<<4;
optable[i] = toop;
//printf( " %d %d %d\n", iop, val, longestzeroes );
}
//printf( "HBT: %d = %d\n", i, optable[i] );
}
//exit(1);
return 0;
}
void Turbo8BitRun( int8_t adcval )
{
int16_t adcv = adcval;
adcv *= FRONTEND_AMPLITUDE;
if( adcv > 127 ) adcv = 127;
if( adcv < -128 ) adcv = -128;
running_integral += adcv>>INITIAL_DECIMATE;
uint16_t action = actiontable[actiontableplace++];
uint8_t n;
//Counts are approximate counts for PMS133
for( n = 0; //1CYC
n < MAX_FREQS; //2CYC
n++, //1CYC
action>>=1 //2CYC
)
{
//Everything inside this loop is executed ~3/4 * MAX_FREQS per audio sample. so.. ~9x.
//If op @ 4MHz, we get 44 cycles in here.
//If no operation is scheduled, continue.
if( !( action & 1 ) ) continue; //1CYC
uint8_t ao = which_octave_for_op[n]; //4CYC
ao++; //1CYC
if( ao >= NR_OF_OPS ) ao = 0; //2CYC
which_octave_for_op[n] = ao; //2CYC (idxm)
uint8_t op = optable[ao]; //"theoretically" 3CYC (if you align things right)
//1CYC (Put A into specific RAM location)
//If we are on the one thing we aren't supposed to operate within, cancel.
if( op == 255 ) continue; //2CYC (if op is in A)
//Tricky: We share the integral with SIN and COS.
//We don't need to. It would produce a slightly cleaner signal. See: NOTE 3
uint8_t octave = op & 0xf; //1CYC (if op is in A)
uint8_t intindex = octave * MAX_FREQS //Load mulop with 12 [2CYC]; mul [1CYC]
+ n; //Add [1CYC]
//[1CYC] more cycle to write A into RAM[(intindex)
//int invoct = OCTAVES-1-octaveplace;
int8_t diff;
if( op & 0x10 ) //ADD //2CYC
{
diff = integral_at[intindex] //Assume "IntIndex" is in A, add integral_at to A [1], move A to an index [1]. [2] to read into acc. [4CYC]
- running_integral; //1CYC to subtract.
//1CYC to write diff into a memory location.
}
else //SUBTRACT
{
diff = running_integral - integral_at[intindex];
}
//30 cycles so far.
integral_at[intindex] = running_integral; //[3CYC]
//if( diff > 124 || diff < -124 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
//uint8_t idx = ( intindex << 1 ); //Overwrite intindex.
intindex <<= 1; //1CYC
if( op&(1<<6) ) //2CYC
{
intindex |= 1; //1CYC
}
uint8_t mulmuxval = mulmux[n]; //[4CYC]
//Do you live on a super lame processor? {NOTE 4}
//If you do, you might not have good signed multiply operations. So, an alternative mechanism is found here.
// +) Able to more cleanly crush to an 8-bit multiply.
// +) Gets extra bit of precision back, i.e. the sign bit is now used as a data bit.
// -) More than 1 line of C code. Requires possible double invert.
#if 1
//rough processor, i.e. PMS133
if( diff < 0 ) //[2CYC]
{
diff *= -1; //[1CYC]
diff >>= (OCTAVES-1-octave); // ???TRICKY??? Should this be a multiply?
//if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
diff = ((uint16_t)diff * (uint16_t)mulmuxval)>>INTEGRATOR_DECIMATE; //[3CYC]
diff *= -1; //[1CYC]
}
else
{
diff >>= (OCTAVES-1-octave);
//if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
diff = ((uint16_t)diff * (uint16_t)mulmuxval)>>INTEGRATOR_DECIMATE;
}
//@48 cycles :( :( :(
#else
//Decent processor, i.e. ATTiny85.
diff = ((diff>>(OCTAVES-1-octave)) * mulmuxval ) >> 6;
#endif
//printf( "%d\n", diff );
int8_t tmp =
cossindata[intindex] //[3CYC]
+ diff //[1CYC]
- (cossindata[intindex]>>4) //[2CYC]
;
if( tmp > 0 ) tmp--; //2CYC
if( tmp < 0 ) tmp++; //2CYC
cossindata[intindex] = tmp; //2CYC
//60ish cycles :( :( :(
}
}
void DoDFT8BitTurbo( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup )
{
static int is_setup;
if( !is_setup ) { is_setup = 1; Setup( frequencies, bins ); }
static int last_place;
int i;
for( i = last_place; i != place_in_data_buffer; i = (i+1)%size_of_data_buffer )
{
int16_t ifr1 = (int16_t)( ((databuffer[i]) ) * 4095 );
Turbo8BitRun( ifr1>>5 ); //5 = Actually only feed algorithm numbers from -128 to 127.
}
last_place = place_in_data_buffer;
static int idiv;
idiv++;
#if 1
for( i = 0; i < bins; i++ )
{
int iss = cossindata[i*2+0]>>FINAL_DECIMATE;
int isc = cossindata[i*2+1]>>FINAL_DECIMATE;
int mux = iss * iss + isc * isc;
if( mux <= 0 )
{
outbins[i] = 0;
}
else
{
outbins[i] = sqrt((float)mux)/50.0;
if( abs( cossindata[i*2+0] ) > 120 || abs( cossindata[i*2+1] ) > 120 )
printf( "CS OVF %d/%d/%d/%f\n", i, cossindata[i*2+0], cossindata[i*2+1],outbins[i] );
}
}
#endif
}

View file

@ -0,0 +1,295 @@
#include <stdint.h>
#include <stdlib.h>
#include "DFT8Turbo.h"
#include <math.h>
#include <stdio.h>
#define MAX_FREQS (24)
#define OCTAVES (5)
/*
* The first thought was using an integration map and only operating when we need to, to pull the data out.
* Now we're doing the thing below this block comment
int16_t accumulated_total; //2 bytes
int16_t last_accumulated_total_at_bin[MAX_FREQS*2]; //24 * 2 * sizeof(int16_t) = 96 bytes.
uint8_t current_time; //1 byte
uint8_t placecode[MAX_FREQS];
*/
//OK... We don't have enough ram to sum everything... can we do something wacky with multiple ocatives to sum everything better?
//i.e.
//
// 4332322132212210
//
// ++++++++++++++++-----------------
// ++++++++--------
// ++++----++++----
// ++--++--++--++--
// +-+-+-+-+-+-+-+-
//
// Don't forget we need to do this for sin and cos.
// Can we instead of making this plusses, make it a multiplier?
// How can we handle sin+cos?
//
// Is it possible to do this for every frame? I.e. for each of the 24 notes, multiply with their current place in table?
// That's interesting. It's not like a sin table.
// There is no "multiply" in the attiny instruction set for attiny85.
// There is, however for attiny402
//Question: Can we do five octaves, or does this need to be balanced?
//Question2: Should we weight higher octaves?
//ATTiny402: 256x8 RAM, 4096x8 FLASH LPM: 3 cycles + FMUL: 2 cycles << Do stacked sin waves?
//ATtiny85: 512x8 RAM, 8192x8 FLASH LPM: 3 cycles + NO MULTIPLY << Do square waves?
/* Approaches:
on ATtiny402: Stacked sin approach.
Say 16 MHz, though 12 MHz is interesting...
16k SPS: 1k cycles per; say 24 bins per; 41 cycles per bin = hard. But is it too hard?
20 cycles per s/c.
read place in stacked table (8? bits) 3 cycles
//Inner loop = 17 cycles.
read stacked table (8 bits), 3 cycles
fractional multiply table with current value. 2 cycles
read current running for note 2 cycles (LDS = 3 cycles)
subtract a shifted version, to make it into an IIR. (4 cycles)
add in current values. (2 cycles)
store data back to ram (2 cycles)
advance place in stacked table (8?bits) 1 cycle
store place in stacked table (8? bits) 3 cycles?
//What if we chunk ADC updates into groups of 4 or 8?
//This is looking barely possible.
on attiny85: scheduled adds/subtracts (like a stacked-square-wave-table)
//XXX TODO!
*/
/* Ok... Let's think about the ATTiny402. 256x8 RAM + 4096x8 FLASH.
* We can create a table which has all octaves overlaid.
* We would need to keep track of:
* 12 x 2 x 2 = 48 bytes = Current sin/cos values.
* 12 x 2 = 24 bytes = Current place in table. = 72 bytes
* We would need to store:
* The layered lookup table. If possible, keep @ 256 bytes to simplify math ops.
* The speed by which each note needs to advance.
* We would need to:
* Read current running place. X 8 cycles
* Use that place to look up into sin table. 3 cycles
* Read running val 4 cycles best case
* Multiply out the sin + IIR 5 cycles
* Store running val 4 cycles best case
* Cos-advance that place to look up into sin table. 4 cycles
* Read running val 4 cycles best case
* Multiply out the sin + IIR 5 cycles
* Store running val 4 cycles best case.
* Read how much to advance X by. 4 cycles
* (Cos^2+Sin^2) 8?
* Store it. 4 cycles best case.
* = 48 x 12 = 576 cycles. Assume 10 MHz @ 16k SPS. We're OK (625 samples)
*/
// Observation: The two tables are actually mirror images of each other, well diagonally mirrored. That's odd. But, would take CPU to exploit.
#define SSTABLESIZE 256
int8_t spikysin_interleved_cos[SSTABLESIZE][2];
uint32_t advancespeed[MAX_FREQS];
static int CompTableWithPhase( int nelements, float phase, int scaling )
{
int highest = 0;
int i;
for( i = 0; i < nelements; i++ )
{
float taued = i * 3.141592 * 2.0 / nelements;
int o;
float combsin = 0;
for( o = 0; o < OCTAVES; o++ )
{
combsin += sin( taued * (1<<o) + phase);
}
combsin /= OCTAVES;
int csadapt = combsin * scaling - 0.5; //No value is higher with five octaves. XXX TODO Lookout. If you change # of octaves, need to change this, too.
if( csadapt > highest ) highest = csadapt;
if( -csadapt > highest ) highest = -csadapt;
if( csadapt > 127 ) csadapt = 127;
if( csadapt < -128 ) csadapt = -128; //tricky: Keep balanced.
spikysin_interleved_cos[i][0] = csadapt;
float combcos = 0;
for( o = 0; o < OCTAVES; o++ )
{
combcos += cos( taued * (1<<o) + phase );
}
combcos /= OCTAVES;
csadapt = combcos * scaling - 0.5; //No value is higher with five octaves. XXX TODO Lookout. If you change # of octaves, need to change this, too.
if( csadapt > highest ) highest = csadapt;
if( -csadapt > highest ) highest = -csadapt;
if( csadapt > 127 ) csadapt = 127;
if( csadapt < -128 ) csadapt = -128; //tricky: Keep balanced.
spikysin_interleved_cos[i][1] = csadapt;
}
return highest;
}
static int Setup( float * frequencies, int bins )
{
int i;
//Since start position/phase is arbitrary, we should try several to see which gives us the best dynamic range.
float tryphase = 0;
float bestphase = 0;
int highest_val_at_best_phase = 1000000;
for( tryphase = 0; tryphase < 3.14159; tryphase += 0.001 )
{
int highest = CompTableWithPhase( SSTABLESIZE, tryphase, 65536 );
if( highest < highest_val_at_best_phase )
{
highest_val_at_best_phase = highest;
bestphase = tryphase;
}
}
printf( "Best comp: %f : %d\n", bestphase, highest_val_at_best_phase );
//Set this because we would overflow the sinm and cosm regs if we don't. This is sort of like a master volume.
//use this as that input volume knob thing.
float further_reduce = 1.0;
CompTableWithPhase( SSTABLESIZE, bestphase, (65536*128*further_reduce)/highest_val_at_best_phase );
// for( i = 0; i < SSTABLESIZE; i++ )
// {
// printf( "%d %d\n", spikysin_interleved_cos[i*2+0], spikysin_interleved_cos[i*2+1] );
// }
for( i = 0; i < MAX_FREQS; i++ )
{
//frequencies[i] = SPS / Freq
// Need to decide how quickly we sweep through the table.
advancespeed[i] = 65536 * 256.0 /* fixed point */ * 256.0 /* size of table */ / frequencies[i];
//printf( "%f\n", frequencies[i] );
}
return 0;
}
/*
uint8_t spikysin_interleved_cos[256*2];
uint16_t advancespeed[MAX_FREQS];
*/
float toutbins[MAX_FREQS];
struct notedat
{
uint32_t time;
int32_t sinm;
int32_t cosm;
};
static struct notedat nd[MAX_FREQS];
void Turbo8BitRun( int8_t adcval )
{
int i;
for( i = 0; i < MAX_FREQS; i++ )
{
uint32_t ct = nd[i].time;
int32_t muxres;
int32_t running;
int32_t rdesc, rdess;
uint8_t * spikysintable = &spikysin_interleved_cos[(ct>>24)][0];
int8_t ss = *(spikysintable++);
#define DECIR 8
muxres = ((int16_t)adcval * ss + (1<<(DECIR-1)) ) >> (DECIR);
running = nd[i].cosm;
running += muxres;
rdesc = running >> 8;
running -= rdesc >> 3;
nd[i].cosm = running;
if( i == 0) printf( "MRX %5d %9d %9d %9d %9d\n", muxres, adcval, ss, running, nd[i].sinm );
int8_t sc = *(spikysintable++);
muxres = ((int16_t)adcval * sc + (1<<(DECIR-1)) ) >> (DECIR);
running = nd[i].sinm;
running += muxres;
rdess = running>>8;
running -= rdess >> 3;
nd[i].sinm = running;
nd[i].time = ct + advancespeed[i];
toutbins[i] = rdess * rdess + rdesc * rdesc;
//printf( "%d %d = %f %p\n", rdess, rdesc, toutbins[i], &toutbins[i] );
}
static uint8_t stater;
/* stater++;
if( stater == 16 )
{
stater = 0;
for( i = 0; i < MAX_FREQS; i++ )
{
nd[i].sinm -= nd[i].sinm >> 12;
nd[i].cosm -= nd[i].cosm >> 12;
nd[i].sinm += 8;
nd[i].cosm += 8;
}
}*/
}
void DoDFT8BitTurbo( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup )
{
static int is_setup;
if( !is_setup ) { is_setup = 1; Setup( frequencies, bins ); }
static int last_place;
int i;
for( i = last_place; i != place_in_data_buffer; i = (i+1)%size_of_data_buffer )
{
int16_t ifr1 = (int16_t)( ((databuffer[i]) ) * 4095 );
//ifr1 += 4095;
//ifr1 += 512;
Turbo8BitRun( ifr1>>5 ); //6 = Actually only feed algorithm numbers from -64 to 63.
}
last_place = place_in_data_buffer;
for( i = 0; i < bins; i++ )
{
outbins[i] = 0;
}
for( i = 0; i < MAX_FREQS; i++ )
{
int iss = nd[i].sinm>>8;
int isc = nd[i].cosm>>8;
int mux = iss * iss + isc * isc;
if( mux == 0 ) mux = 1;
if( i == 0 )
printf( "MUX: %d %d\n", isc, iss );
outbins[i+MAX_FREQS] = sqrt(mux)/200.0;
}
}

View file

@ -0,0 +1,9 @@
#ifndef _DFT8TURBO_H
#define _DFT8TURBO_H
/* Note: Frequencies must be precompiled. */
void DoDFT8BitTurbo( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup );
#endif

View file

@ -0,0 +1,9 @@
#ifndef _DFT8TURBO_H
#define _DFT8TURBO_H
/* Note: Frequencies must be precompiled. */
void DoDFT8BitTurbo( float * outbins, float * frequencies, int bins, const float * databuffer, int place_in_data_buffer, int size_of_data_buffer, float q, float speedup );
#endif

View file

@ -32,7 +32,7 @@
//We take the raw signal off of the //We take the raw signal off of the
#ifndef FILTER_BLUR_PASSES #ifndef FILTER_BLUR_PASSES
#define FILTER_BLUR_PASSES 2 #define FILTER_BLUR_PASSES 1
#endif #endif
//Determines bit shifts for where notes lie. We represent notes with an //Determines bit shifts for where notes lie. We represent notes with an

View file

@ -61,17 +61,17 @@ void UpdateLinearLEDs()
{ {
if( note_peak_freqs[ sorted_note_map[j] ] > nff ) if( note_peak_freqs[ sorted_note_map[j] ] > nff )
{ {
break; // so j is correct place to insert break;
} }
} }
for( k = sorted_map_count; k > j; k-- ) // make room for( k = sorted_map_count; k > j; k-- )
{ {
sorted_note_map[k] = sorted_note_map[k-1]; sorted_note_map[k] = sorted_note_map[k-1];
} }
sorted_note_map[j] = i; // insert in correct place sorted_note_map[j] = i;
#else #else
sorted_note_map[sorted_map_count] = i; // insert at end
#endif #endif
sorted_note_map[sorted_map_count] = i;
sorted_map_count++; sorted_map_count++;
} }