8turbo is really turning into a real 8turbo
This commit is contained in:
parent
1432f22b77
commit
cd56e249bc
|
@ -1,3 +1,5 @@
|
|||
//NOTE DO NOT EDIT THIS FILE WITHOUT ALSO EDITING DFT8TURBO!!!
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include "DFT12Small.h"
|
||||
|
@ -32,9 +34,6 @@
|
|||
#define FINAL_DECIMATE (1)
|
||||
#endif
|
||||
|
||||
//Right now, we need 8*freqs*octaves bytes.
|
||||
//This is bad.
|
||||
//What can we do to fix it?
|
||||
|
||||
//4x the hits (sin/cos and we need to do it once for each edge)
|
||||
//8x for selecting a higher octave.
|
||||
|
@ -199,116 +198,104 @@ void Small12BitRun( int8_t adcval )
|
|||
if( adcv < -128 ) adcv = -128;
|
||||
running_integral += adcv>>INITIAL_DECIMATE;
|
||||
|
||||
#define dprintf( ... )
|
||||
|
||||
uint32_t action = actiontable[actiontableplace++];
|
||||
int n;
|
||||
dprintf( "%4d ", actiontableplace );
|
||||
for( n = 0; n < MAX_FREQS; n++ )
|
||||
for( n = 0; n < MAX_FREQS; n++, action>>=1 )
|
||||
{
|
||||
if( action & (1<<n) )
|
||||
if( !( action & 1 ) ) continue;
|
||||
|
||||
int ao = which_octave_for_op[n];
|
||||
ao++;
|
||||
if( ao >= NR_OF_OPS ) ao = 0;
|
||||
which_octave_for_op[n] = ao;
|
||||
|
||||
int op = optable[ao];
|
||||
|
||||
if( op == 255 )
|
||||
continue;
|
||||
|
||||
//int octaveplace = op & 0xf;
|
||||
|
||||
//Tricky: We share the integral with SIN and COS.
|
||||
//We don't need to. It would produce a slightly cleaner signal. See: NOTE 3
|
||||
uint8_t octave = op & 0xf;
|
||||
uint8_t intindex = octave * MAX_FREQS + n;
|
||||
|
||||
//int invoct = OCTAVES-1-octaveplace;
|
||||
int16_t diff;
|
||||
|
||||
if( op & 0x10 ) //ADD
|
||||
{
|
||||
int ao = which_octave_for_op[n];
|
||||
int op = optable[ao];
|
||||
ao++;
|
||||
if( ao >= NR_OF_OPS ) ao = 0;
|
||||
which_octave_for_op[n] = ao;
|
||||
diff = integral_at[intindex] - running_integral;
|
||||
}
|
||||
else //SUBTRACT
|
||||
{
|
||||
diff = running_integral - integral_at[intindex];
|
||||
}
|
||||
|
||||
if( op == 255 )
|
||||
{
|
||||
dprintf( "*" ); //NOP
|
||||
}
|
||||
else
|
||||
{
|
||||
//int octaveplace = op & 0xf;
|
||||
|
||||
//Tricky: We share the integral with SIN and COS.
|
||||
//We don't need to. It would produce a slightly cleaner signal. See: NOTE 3
|
||||
uint8_t octave = op & 0xf;
|
||||
uint8_t intindex = octave * MAX_FREQS + n;
|
||||
|
||||
//int invoct = OCTAVES-1-octaveplace;
|
||||
int16_t diff;
|
||||
|
||||
if( op & 0x10 ) //ADD
|
||||
{
|
||||
diff = integral_at[intindex] - running_integral;
|
||||
dprintf( "%c", 'a' + (op & 0xf) );
|
||||
}
|
||||
else //SUBTRACT
|
||||
{
|
||||
diff = running_integral - integral_at[intindex];
|
||||
dprintf( "%c", 'A' + (op & 0xf) );
|
||||
}
|
||||
|
||||
integral_at[intindex] = running_integral;
|
||||
integral_at[intindex] = running_integral;
|
||||
|
||||
#ifdef TWELVEBIT
|
||||
if( diff > 2000 || diff < -2000 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
|
||||
if( diff > 2000 || diff < -2000 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
|
||||
#elif defined( EIGHTBIT )
|
||||
if( diff > 124 || diff < -124 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
|
||||
if( diff > 124 || diff < -124 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
|
||||
#endif
|
||||
|
||||
uint8_t idx = ( intindex << 1 );
|
||||
if( op&(1<<6) )
|
||||
{
|
||||
idx |= 1;
|
||||
}
|
||||
//uint8_t idx = ( intindex << 1 );
|
||||
intindex<<=1;
|
||||
|
||||
//printf( "%d: %d + %d * %d >> 8 - %d\n", idx, cossindata[idx], diff, mulmux[idx/2], cossindata[idx]>>4 );
|
||||
if( op&(1<<6) )
|
||||
{
|
||||
intindex |= 1;
|
||||
}
|
||||
|
||||
uint8_t mulmuxval = mulmux[n];
|
||||
//printf( "%d: %d + %d * %d >> 8 - %d\n", intindex, cossindata[intindex], diff, mulmux[intindex/2], cossindata[intindex]>>4 );
|
||||
|
||||
uint8_t mulmuxval = mulmux[n];
|
||||
|
||||
|
||||
//Do you live on a super lame processor? {NOTE 4}
|
||||
//If you do, you might not have good signed multiply operations. So, an alternative mechanism is found here.
|
||||
// +) Able to more cleanly crush to an 8-bit multiply.
|
||||
// +) Gets extra bit of precision back, i.e. the sign bit is now used as a data bit.
|
||||
// -) More than 1 line of C code. Requires possible double invert.
|
||||
//Do you live on a super lame processor? {NOTE 4}
|
||||
//If you do, you might not have good signed multiply operations. So, an alternative mechanism is found here.
|
||||
// +) Able to more cleanly crush to an 8-bit multiply.
|
||||
// +) Gets extra bit of precision back, i.e. the sign bit is now used as a data bit.
|
||||
// -) More than 1 line of C code. Requires possible double invert.
|
||||
#if 1
|
||||
//Terrible processor, i.e. PMS133
|
||||
if( 0 && diff < 0 )
|
||||
{
|
||||
diff *= -1;
|
||||
diff >>= (OCTAVES-1-octave);
|
||||
//Terrible processor, i.e. PMS133
|
||||
if( 0 && diff < 0 )
|
||||
{
|
||||
diff *= -1;
|
||||
diff >>= (OCTAVES-1-octave);
|
||||
|
||||
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
|
||||
diff = (uint16_t)diff * (uint16_t)mulmuxval;
|
||||
diff >>= INTEGRATOR_DECIMATE;
|
||||
diff = (uint16_t)diff * (uint16_t)mulmuxval;
|
||||
diff >>= INTEGRATOR_DECIMATE;
|
||||
|
||||
diff *= -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
diff >>= (OCTAVES-1-octave);
|
||||
|
||||
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
|
||||
diff = (uint16_t)diff * (uint16_t)mulmuxval;
|
||||
diff >>= INTEGRATOR_DECIMATE;
|
||||
}
|
||||
#else
|
||||
//Decent processor, i.e. ATTiny85.
|
||||
diff = ((diff>>(OCTAVES-1-octave)) * mulmuxval ) >> 6;
|
||||
#endif
|
||||
cossindata[idx] = cossindata[idx]
|
||||
+ diff
|
||||
- (cossindata[idx]>>4)
|
||||
;
|
||||
|
||||
#ifdef EIGHTBIT
|
||||
if( cossindata[idx] > 0 ) cossindata[idx]--;
|
||||
if( cossindata[idx] < 0 ) cossindata[idx]++;
|
||||
#endif
|
||||
}
|
||||
diff *= -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
dprintf( " " );
|
||||
}
|
||||
diff >>= (OCTAVES-1-octave);
|
||||
|
||||
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
|
||||
diff = (uint16_t)diff * (uint16_t)mulmuxval;
|
||||
diff >>= INTEGRATOR_DECIMATE;
|
||||
}
|
||||
#else
|
||||
//Decent processor, i.e. ATTiny85.
|
||||
diff = ((diff>>(OCTAVES-1-octave)) * mulmuxval ) >> 6;
|
||||
#endif
|
||||
cossindata[intindex] = cossindata[intindex]
|
||||
+ diff
|
||||
- (cossindata[intindex]>>4)
|
||||
;
|
||||
|
||||
#ifdef EIGHTBIT
|
||||
if( cossindata[intindex] > 0 ) cossindata[intindex]--;
|
||||
if( cossindata[intindex] < 0 ) cossindata[intindex]++;
|
||||
#endif
|
||||
}
|
||||
dprintf( "\n" );
|
||||
|
||||
}
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
//NOTE DO NOT EDIT THIS FILE WITHOUT ALSO EDITING DFT12SMALL!!!
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include "DFT8Turbo.h"
|
||||
|
@ -5,7 +7,6 @@
|
|||
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
#define MAX_FREQS (12)
|
||||
#define OCTAVES (4)
|
||||
|
||||
|
@ -15,67 +16,24 @@
|
|||
You should test with extreme cases, like square wave sweeps in, etc.
|
||||
*/
|
||||
|
||||
//#define TWELVEBIT
|
||||
#define EIGHTBIT
|
||||
|
||||
#ifdef TWELVEBIT
|
||||
//No larger than 12-bit signed values for integration or sincos
|
||||
#define FRONTEND_AMPLITUDE (0)
|
||||
#define INITIAL_DECIMATE (2)
|
||||
#define INTEGRATOR_DECIMATE (8)
|
||||
#define FINAL_DECIMATE (4)
|
||||
#elif defined( EIGHTBIT )
|
||||
//No larger than 8-bit signed values for integration or sincos
|
||||
#define FRONTEND_AMPLITUDE (2)
|
||||
#define INITIAL_DECIMATE (5) //Yurgh... only 3 bits of ADC data. That's 8 unique levels :(
|
||||
#define INTEGRATOR_DECIMATE (8)
|
||||
#define FINAL_DECIMATE (1)
|
||||
#endif
|
||||
|
||||
//Right now, we need 8*freqs*octaves bytes.
|
||||
//This is bad.
|
||||
//What can we do to fix it?
|
||||
|
||||
#define OPTABLETYPE uint16_t //Make uint8_t if on attiny.
|
||||
|
||||
//4x the hits (sin/cos and we need to do it once for each edge)
|
||||
//8x for selecting a higher octave.
|
||||
#define FREQREBASE 8.0
|
||||
#define TARGFREQ 10000.0
|
||||
|
||||
/* Tradeoff guide:
|
||||
|
||||
* We will optimize for RAM size here.
|
||||
|
||||
* INITIAL_DECIMATE; A larger decimation: {NOTE 1}
|
||||
+) Reduces the bit depth needed for the integral map.
|
||||
If you use "1" and a fully saturted map (highest note is every sample), it will not overflow a signed 12-bit number.
|
||||
-) Increases noise.
|
||||
With full-scale: 0->1 minimal 1->2 minimal 2->3 significantly noticable, 3->4 major.
|
||||
If sound is quieter, it matters more. Not sure with other changes in system. (2) seems ok.
|
||||
-) If you make it (1) or (0) You can't do an 8-bit multiply and keep the output in a signed range.
|
||||
Also, other things, like frequency of hits can manipulate the maximum bit depth needed for integral map.
|
||||
|
||||
* If you weight the bins in advance see "mulmux", you can: {NOTE 2}
|
||||
+) potentially use shallower bit depth but
|
||||
-) have to compute the multiply every time you update the bin.
|
||||
|
||||
* You can use a modified-square-wave which only integrates for 1/2 of the duty cycle. {NOTE 3}
|
||||
+) uses 1/2 the integral memory.
|
||||
-) Not as pretty of an output. See "integral_at"
|
||||
|
||||
*TODO: Investigate using all unsigned (to make multiply and/or 12-bit storage easier)
|
||||
*TODO: Consider a mode which has 16-bit integrals, but still 8-bit cossin data.
|
||||
|
||||
So, the idea here is we would keep a running total of the current ADC value, kept away in a int16_t.
|
||||
It is constantly summing, so we can take an integral of it. Or rather an integral range.
|
||||
|
||||
Over time, we perform operations like adding or subtracting from a current place. It basically is
|
||||
a DFT where the kernel is computed using square waves (or modified square waves)
|
||||
*/
|
||||
|
||||
//These live in RAM.
|
||||
int16_t running_integral; //Realistically treat as 12-bits on ramjet8
|
||||
int16_t integral_at[MAX_FREQS*OCTAVES]; //For ramjet8, make 12-bits
|
||||
int32_t cossindata[MAX_FREQS*OCTAVES*2]; //Contains COS and SIN data. (32-bit for now, will be 16-bit, potentially even 8.)
|
||||
int8_t running_integral; //Realistically treat as 12-bits on ramjet8
|
||||
int8_t integral_at[MAX_FREQS*OCTAVES]; //For ramjet8, make 12-bits
|
||||
int8_t cossindata[MAX_FREQS*OCTAVES*2]; //Contains COS and SIN data. (32-bit for now, will be 16-bit, potentially even 8.)
|
||||
uint8_t which_octave_for_op[MAX_FREQS]; //counts up, tells you which ocative you are operating on. PUT IN RAM.
|
||||
uint8_t actiontableplace;
|
||||
|
||||
|
@ -84,13 +42,13 @@ uint8_t actiontableplace;
|
|||
// 255 = DO NOT OPERATE
|
||||
// bits 0..3 unfolded octave, i.e. sin/cos are offset by one.
|
||||
// bit 4 = add or subtract.
|
||||
uint8_t optable[NR_OF_OPS]; //PUT IN FLASH
|
||||
OPTABLETYPE optable[NR_OF_OPS]; //PUT IN FLASH
|
||||
|
||||
#define ACTIONTABLESIZE 256
|
||||
uint16_t actiontable[ACTIONTABLESIZE]; //PUT IN FLASH // If there are more than 8 freqbins, this must be a uint16_t, otherwise if more than 16, 32.
|
||||
//Format is
|
||||
|
||||
uint8_t mulmux[MAX_FREQS]; //PUT IN FLASH
|
||||
OPTABLETYPE mulmux[MAX_FREQS]; //PUT IN FLASH
|
||||
|
||||
static int Setup( float * frequencies, int bins )
|
||||
{
|
||||
|
@ -199,117 +157,112 @@ void Turbo8BitRun( int8_t adcval )
|
|||
if( adcv < -128 ) adcv = -128;
|
||||
running_integral += adcv>>INITIAL_DECIMATE;
|
||||
|
||||
#define dprintf( ... )
|
||||
uint16_t action = actiontable[actiontableplace++];
|
||||
uint8_t n;
|
||||
|
||||
uint32_t action = actiontable[actiontableplace++];
|
||||
int n;
|
||||
dprintf( "%4d ", actiontableplace );
|
||||
for( n = 0; n < MAX_FREQS; n++ )
|
||||
//Counts are approximate counts for PMS133
|
||||
|
||||
for( n = 0; //1CYC
|
||||
n < MAX_FREQS; //2CYC
|
||||
n++, //1CYC
|
||||
action>>=1 //2CYC
|
||||
)
|
||||
{
|
||||
if( action & (1<<n) )
|
||||
//Everything inside this loop is executed ~3/4 * MAX_FREQS. so.. ~9x.
|
||||
//If op @ 4MHz, we get 44 cycles in here.
|
||||
|
||||
//If no operation is scheduled, continue.
|
||||
if( !( action & 1 ) ) continue; //1CYC
|
||||
|
||||
uint8_t ao = which_octave_for_op[n]; //4CYC
|
||||
ao++; //1CYC
|
||||
if( ao >= NR_OF_OPS ) ao = 0; //2CYC
|
||||
which_octave_for_op[n] = ao; //2CYC (idxm)
|
||||
|
||||
uint8_t op = optable[ao]; //"theoretically" 3CYC (if you align things right)
|
||||
//1CYC (Put A into specific RAM location)
|
||||
|
||||
//If we are on the one thing we aren't supposed to operate within, cancel.
|
||||
if( op == 255 ) continue; //2CYC (if op is in A)
|
||||
|
||||
//Tricky: We share the integral with SIN and COS.
|
||||
//We don't need to. It would produce a slightly cleaner signal. See: NOTE 3
|
||||
uint8_t octave = op & 0xf; //1CYC (if op is in A)
|
||||
|
||||
|
||||
uint8_t intindex = octave * MAX_FREQS //Load mulop with 12 [2CYC]; mul [1CYC]
|
||||
+ n; //Add [1CYC]
|
||||
//[1CYC] more cycle to write A into RAM[(intindex)
|
||||
//int invoct = OCTAVES-1-octaveplace;
|
||||
int8_t diff;
|
||||
|
||||
if( op & 0x10 ) //ADD //2CYC
|
||||
{
|
||||
int ao = which_octave_for_op[n];
|
||||
int op = optable[ao];
|
||||
ao++;
|
||||
if( ao >= NR_OF_OPS ) ao = 0;
|
||||
which_octave_for_op[n] = ao;
|
||||
diff = integral_at[intindex] //Assume "IntIndex" is in A, add integral_at to A [1], move A to an index [1]. [2] to read into acc. [4CYC]
|
||||
- running_integral; //1CYC to subtract.
|
||||
//1CYC to write diff into a memory location.
|
||||
}
|
||||
else //SUBTRACT
|
||||
{
|
||||
diff = running_integral - integral_at[intindex];
|
||||
}
|
||||
|
||||
if( op == 255 )
|
||||
{
|
||||
dprintf( "*" ); //NOP
|
||||
}
|
||||
else
|
||||
{
|
||||
//int octaveplace = op & 0xf;
|
||||
//30 cycles so far.
|
||||
|
||||
//Tricky: We share the integral with SIN and COS.
|
||||
//We don't need to. It would produce a slightly cleaner signal. See: NOTE 3
|
||||
uint8_t octave = op & 0xf;
|
||||
uint8_t intindex = octave * MAX_FREQS + n;
|
||||
integral_at[intindex] = running_integral; //[3CYC]
|
||||
|
||||
//int invoct = OCTAVES-1-octaveplace;
|
||||
int16_t diff;
|
||||
//if( diff > 124 || diff < -124 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
|
||||
|
||||
//uint8_t idx = ( intindex << 1 ); //Overwrite intindex.
|
||||
intindex <<= 1; //1CYC
|
||||
|
||||
if( op & 0x10 ) //ADD
|
||||
{
|
||||
diff = integral_at[intindex] - running_integral;
|
||||
dprintf( "%c", 'a' + (op & 0xf) );
|
||||
}
|
||||
else //SUBTRACT
|
||||
{
|
||||
diff = running_integral - integral_at[intindex];
|
||||
dprintf( "%c", 'A' + (op & 0xf) );
|
||||
}
|
||||
if( op&(1<<6) ) //2CYC
|
||||
{
|
||||
intindex |= 1; //1CYC
|
||||
}
|
||||
|
||||
integral_at[intindex] = running_integral;
|
||||
|
||||
#ifdef TWELVEBIT
|
||||
if( diff > 2000 || diff < -2000 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
|
||||
#elif defined( EIGHTBIT )
|
||||
if( diff > 124 || diff < -124 ) printf( "!!!!!!!!!!!! %d !!!!!!!!!!!\n", diff );
|
||||
#endif
|
||||
|
||||
uint8_t idx = ( intindex << 1 );
|
||||
if( op&(1<<6) )
|
||||
{
|
||||
idx |= 1;
|
||||
}
|
||||
|
||||
//printf( "%d: %d + %d * %d >> 8 - %d\n", idx, cossindata[idx], diff, mulmux[idx/2], cossindata[idx]>>4 );
|
||||
|
||||
uint8_t mulmuxval = mulmux[n];
|
||||
uint8_t mulmuxval = mulmux[n]; //[4CYC]
|
||||
|
||||
|
||||
//Do you live on a super lame processor? {NOTE 4}
|
||||
//If you do, you might not have good signed multiply operations. So, an alternative mechanism is found here.
|
||||
// +) Able to more cleanly crush to an 8-bit multiply.
|
||||
// +) Gets extra bit of precision back, i.e. the sign bit is now used as a data bit.
|
||||
// -) More than 1 line of C code. Requires possible double invert.
|
||||
//Do you live on a super lame processor? {NOTE 4}
|
||||
//If you do, you might not have good signed multiply operations. So, an alternative mechanism is found here.
|
||||
// +) Able to more cleanly crush to an 8-bit multiply.
|
||||
// +) Gets extra bit of precision back, i.e. the sign bit is now used as a data bit.
|
||||
// -) More than 1 line of C code. Requires possible double invert.
|
||||
#if 1
|
||||
//Terrible processor, i.e. PMS133
|
||||
if( 0 && diff < 0 )
|
||||
{
|
||||
diff *= -1;
|
||||
diff >>= (OCTAVES-1-octave);
|
||||
//rough processor, i.e. PMS133
|
||||
if( diff < 0 ) //[2CYC]
|
||||
{
|
||||
diff *= -1; //[1CYC]
|
||||
diff >>= (OCTAVES-1-octave); // ???TRICKY???
|
||||
//if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
|
||||
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
|
||||
diff = (uint16_t)diff * (uint16_t)mulmuxval;
|
||||
diff >>= INTEGRATOR_DECIMATE;
|
||||
|
||||
diff *= -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
diff >>= (OCTAVES-1-octave);
|
||||
|
||||
if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
|
||||
diff = (uint16_t)diff * (uint16_t)mulmuxval;
|
||||
diff >>= INTEGRATOR_DECIMATE;
|
||||
}
|
||||
#else
|
||||
//Decent processor, i.e. ATTiny85.
|
||||
diff = ((diff>>(OCTAVES-1-octave)) * mulmuxval ) >> 6;
|
||||
#endif
|
||||
cossindata[idx] = cossindata[idx]
|
||||
+ diff
|
||||
- (cossindata[idx]>>4)
|
||||
;
|
||||
|
||||
#ifdef EIGHTBIT
|
||||
if( cossindata[idx] > 0 ) cossindata[idx]--;
|
||||
if( cossindata[idx] < 0 ) cossindata[idx]++;
|
||||
#endif
|
||||
}
|
||||
diff = ((uint16_t)diff * (uint16_t)mulmuxval)>>INTEGRATOR_DECIMATE; //[3CYC]
|
||||
diff *= -1; //[1CYC]
|
||||
}
|
||||
else
|
||||
{
|
||||
dprintf( " " );
|
||||
}
|
||||
}
|
||||
dprintf( "\n" );
|
||||
diff >>= (OCTAVES-1-octave);
|
||||
//if( diff > 250 ) printf( "!!!!!!!**** %d ****!!!!!!!\n", diff );
|
||||
diff = ((uint16_t)diff * (uint16_t)mulmuxval)>>INTEGRATOR_DECIMATE;
|
||||
}
|
||||
|
||||
//@48 cycles :( :( :(
|
||||
|
||||
#else
|
||||
//Decent processor, i.e. ATTiny85.
|
||||
diff = ((diff>>(OCTAVES-1-octave)) * mulmuxval ) >> 6;
|
||||
#endif
|
||||
//printf( "%d\n", diff );
|
||||
|
||||
cossindata[intindex] = cossindata[intindex]
|
||||
+ diff
|
||||
- (cossindata[intindex]>>4)
|
||||
;
|
||||
|
||||
if( cossindata[intindex] > 0 ) cossindata[intindex]--;
|
||||
if( cossindata[intindex] < 0 ) cossindata[intindex]++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -344,13 +297,9 @@ void DoDFT8BitTurbo( float * outbins, float * frequencies, int bins, const float
|
|||
{
|
||||
outbins[i] = sqrt((float)mux)/50.0;
|
||||
|
||||
#ifdef TWELVEBIT
|
||||
if( abs( cossindata[i*2+0] ) > 1000 || abs( cossindata[i*2+1] ) > 1000 )
|
||||
printf( "CS OVF %d/%d/%d/%f\n", i, cossindata[i*2+0], cossindata[i*2+1],outbins[i] );
|
||||
#elif defined( EIGHTBIT )
|
||||
if( abs( cossindata[i*2+0] ) > 120 || abs( cossindata[i*2+1] ) > 120 )
|
||||
printf( "CS OVF %d/%d/%d/%f\n", i, cossindata[i*2+0], cossindata[i*2+1],outbins[i] );
|
||||
#endif
|
||||
if( abs( cossindata[i*2+0] ) > 120 || abs( cossindata[i*2+1] ) > 120 )
|
||||
printf( "CS OVF %d/%d/%d/%f\n", i, cossindata[i*2+0], cossindata[i*2+1],outbins[i] );
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue