{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from lib import plot\n", "from lib.cs_noise import noise2d\n", "from copy import deepcopy\n", "import IPython" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "paper = deepcopy(plot.A6_LANDSCAPE)\n", "\n", "p_svg = plot.SVGPlotter('plots/hf.svg', paper)\n", "p_hpgl = plot.HPGLPlotter(paper, 'plots/hf_{index}.hpgl')\n", "plotter = plot.MultiPlotter()\n", "plotter.register_plotter(p_svg)\n", "plotter.register_plotter(p_hpgl)\n", "\n", "plotter.draw_frame()\n", "\n", "def add_lines(plotter, lines):\n", " FREQUENCY = 2\n", " X_OVERSAMPLING = 8\n", " REL_AMPLITUDE = 1.4\n", " REL_Y_MARGIN = 0.6\n", "\n", " line_height = paper.content_height / (lines - 1 + 2 * REL_Y_MARGIN)\n", " x_steps = round(paper.content_width * FREQUENCY * X_OVERSAMPLING) + 1\n", " texture = noise2d(x_steps, x_steps)\n", " texture = texture[::(x_steps // lines), :]\n", " texture /= np.max(np.abs(texture))\n", "\n", " for i in range(lines):\n", " y = paper.top() + (i + REL_Y_MARGIN) * line_height\n", " plotter.move_to((paper.left(), y))\n", "\n", " # for x in np.linspace(paper.left(), paper.right(), x_steps):\n", " for j in range(x_steps):\n", " x = paper.left() + j / (x_steps - 1) * paper.content_width\n", " amplitude = line_height * REL_AMPLITUDE * texture[i, j]\n", " plotter.line_to((x, y + amplitude / 2 * np.sin(x * FREQUENCY * 2 * np.pi)))\n", "\n", "paper.set_margins(10)\n", "plotter.add_layer([0, 0.3, 1, 0.5])\n", "add_lines(plotter, 7)\n", "plotter.add_layer([0.6, 0.1, 0, 0.5])\n", "add_lines(plotter, 4)\n", "\n", "plotter.finalise()\n", "IPython.display.SVG(filename=p_svg.file_name)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.10.8 ('venv': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "d5a30a48a9b1be837de7de70323f2cebb904030d8b19bf7af129191d6d192ba3" } } }, "nbformat": 4, "nbformat_minor": 2 }