#!/usr/bin/env python import numpy as np import scipy.ndimage def noise2d(width, height, smooth=1.8, filter_mode='wrap', falloff=0.02, power=3): rng = np.random.default_rng() x = np.zeros((1, 1)) # Zero mean iterations = int(np.ceil(np.log(max(width, height)) / np.log(power))) falloff *= smooth contribution = 1 for i in range(iterations): upscaled = np.zeros((x.shape[0] * power, x.shape[1] * power)) upscaled[power // 2::power, power // 2::power] = x x = scipy.ndimage.gaussian_filter(upscaled, smooth, mode=filter_mode) x += rng.normal(scale=contribution, size=x.shape) contribution *= falloff return x[:width, :height]