laurelin/src/led.c

318 lines
10 KiB
C

#include "led.h"
#include "stm32f030x6.h"
LED_Colour_t LED_PixelData[LED_COUNT] = {{0}};
volatile bool LED_FrameFlag = false;
volatile bool LED_SuspendFlag = false;
#define LED_ODR_MASK ((1 << PIN_LED_R_0) | (1 << PIN_LED_G_0) \
| (1 << PIN_LED_B_0) | (1 << PIN_LED_R_1) \
| (1 << PIN_LED_G_1) | (1 << PIN_LED_B_1) \
| (1 << PIN_LED_R_2) | (1 << PIN_LED_G_2) \
| (1 << PIN_LED_B_2) | (1 << PIN_LED_R_3) \
| (1 << PIN_LED_G_3) | (1 << PIN_LED_B_3))
#define LED_MODER_MASK ((3 << PIN_LED_R_0 * 2) | (3 << PIN_LED_G_0 * 2) \
| (3 << PIN_LED_B_0 * 2) | (3 << PIN_LED_R_1 * 2) \
| (3 << PIN_LED_G_1 * 2) | (3 << PIN_LED_B_1 * 2) \
| (3 << PIN_LED_R_2 * 2) | (3 << PIN_LED_G_2 * 2) \
| (3 << PIN_LED_B_2 * 2) | (3 << PIN_LED_R_3 * 2) \
| (3 << PIN_LED_G_3 * 2) | (3 << PIN_LED_B_3 * 2))
#define LED_MODER ((1 << PIN_LED_R_0 * 2) | (1 << PIN_LED_G_0 * 2) \
| (1 << PIN_LED_B_0 * 2) | (1 << PIN_LED_R_1 * 2) \
| (1 << PIN_LED_G_1 * 2) | (1 << PIN_LED_B_1 * 2) \
| (1 << PIN_LED_R_2 * 2) | (1 << PIN_LED_G_2 * 2) \
| (1 << PIN_LED_B_2 * 2) | (1 << PIN_LED_R_3 * 2) \
| (1 << PIN_LED_G_3 * 2) | (1 << PIN_LED_B_3 * 2))
// TIM3 is clocked by APB1 and thus receives only half the system clock. The 4
// LSBs have bit lengths 2, 4, 8, and 16 cycles and are generated blocking from
// an inline assembly block and are thus not in this table.
static const uint16_t LED_BitLengths[LED_BITS - 4] =
{
16, 32, 64, 128, 256, 512, 1024, 2048
};
static const int LED_Pins[LED_COLUMNS] =
{
PIN_LED_R_0, PIN_LED_G_0, PIN_LED_B_0,
PIN_LED_R_1, PIN_LED_G_1, PIN_LED_B_1,
PIN_LED_R_2, PIN_LED_G_2, PIN_LED_B_2,
PIN_LED_R_3, PIN_LED_G_3, PIN_LED_B_3
};
// Number of 16-bit values to be transferred to the GPIO's output register via
// DMA. Each value contains output values for all columns. For each row, a
// value for each bit is needed, plus a constant last transfer to turn all LEDs
// off during the processing time.
#define LED_DMA_BUFFER_LENGTH (LED_ROWS * (LED_BITS + 1))
// Define buffers for double buffering
static uint16_t LED_DMABuffer1[LED_DMA_BUFFER_LENGTH];
static uint16_t LED_DMABuffer2[LED_DMA_BUFFER_LENGTH];
static uint16_t *volatile LED_FrontBuffer = LED_DMABuffer1;
static uint16_t *volatile LED_BackBuffer = LED_DMABuffer2;
// If true, front and back buffers will be swapped after the current frame
static volatile bool LED_QueuePageFlip = false;
void LED_Commit(void)
{
// Wait for the current data to be displayed in case LED_Commit was called
// more than one time during a single frame. Otherwise, a race condition
// might occur.
while(LED_QueuePageFlip);
for(int r = 0; r < LED_ROWS; r++)
{
for(int i = 0; i < LED_COLUMNS; i++)
{
// Use pixel data as a raw byte buffer to get R, G, B in order
uint8_t colour_value = ((uint8_t*)LED_PixelData)[r * LED_COLUMNS + i];
uint16_t gamma_corrected = (uint16_t)colour_value;
gamma_corrected *= gamma_corrected;
gamma_corrected >>= 16 - LED_BITS;
for(int j = 0; j < LED_BITS; j++)
{
if(gamma_corrected & (1 << j))
{
LED_BackBuffer[r * (LED_BITS + 1) + j] &=
~(1 << LED_Pins[i]);
}
else
{
LED_BackBuffer[r * (LED_BITS + 1) + j] |= 1 << LED_Pins[i];
}
}
}
// Data to reset outputs after all data bits are sent
LED_BackBuffer[r * (LED_BITS + 1) + LED_BITS] = LED_ODR_MASK;
}
LED_QueuePageFlip = true;
}
static void LED_StartBCM(int row)
{
// Reset DMA and timer
TIM3->CR1 = 0x0000;
TIM3->DIER = 0x0000;
TIM3->CNT = 0;
DMA1_Channel3->CCR = 0x0000;
DMA1_Channel4->CCR = 0x0000;
TIM3->ARR = 1; // Delay before everything starts with the first DMA request
TIM3->CR1 = TIM_CR1_ARPE;
// Since ARPE is set, this write goes to ARR's shadow register
TIM3->ARR = LED_BitLengths[0];
TIM3->DIER = TIM_DIER_UDE | TIM_DIER_CC1DE;
// DMA channel 3: Output data to port a on TIM3 update
DMA1_Channel3->CMAR = (uint32_t)&(LED_FrontBuffer[row * (LED_BITS + 1) + 4]);
// One transfer for each bit plus one to set the outputs to zero again.
// The first 4 are sent out with assembly before the first DMA transfer.
DMA1_Channel3->CNDTR = LED_BITS + 1 - 4;
// Highest priority, 16 bits, increment memory, memory to peripheral
DMA1_Channel3->CCR = DMA_CCR_PL | DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0
| DMA_CCR_MINC | DMA_CCR_DIR | DMA_CCR_EN | DMA_CCR_TCIE;
// DMA channel 3: Output data to port a on TIM3 update
// The bit lengths table is offset because the first value is already in
// the timer's ARR shadow register.
DMA1_Channel4->CMAR = (uint32_t)&(LED_BitLengths[1]);
// The first four bits are sent out with the assembly code below, so only
// LED_BITS - 5 bit lengths are needed.
DMA1_Channel4->CNDTR = LED_BITS - 1 - 4;
// 16 bits, memory increment mode, memory to peripheral
DMA1_Channel4->CCR = DMA_CCR_MSIZE_0 | DMA_CCR_PSIZE_0 | DMA_CCR_MINC
| DMA_CCR_DIR | DMA_CCR_EN;
// Send the 4 LSBs, set to zero at the end (so the timing is independent
// from the delay introduced by the DMA)
__asm__ volatile(".syntax unified\n"
"str %[d0], [%[odr]];"
"str %[d1], [%[odr]];"
"nop;"
"nop;"
"str %[d2], [%[odr]];"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"str %[d3], [%[odr]];"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"nop;"
"str %[off], [%[odr]];"
:
: [odr] "l" ((uint32_t)&(GPIOA->ODR)),
[d0] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 0]),
[d1] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 1]),
[d2] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 2]),
[d3] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 3]),
[off] "r" (LED_ODR_MASK)
:);
// Enable TIM3 for the rest of the bits
TIM3->CR1 = TIM_CR1_ARPE | TIM_CR1_CEN;
}
static inline void LED_PulseRowClock(void)
{
__asm__ volatile("nop");
GPIOF->BSRR = (1 << PIN_ROW_SCK);
__asm__ volatile("nop");
GPIOF->BRR = (1 << PIN_ROW_SCK);
}
static inline void LED_PageFlip(void)
{
uint16_t *volatile tmp;
tmp = LED_FrontBuffer;
LED_FrontBuffer = LED_BackBuffer;
LED_BackBuffer = tmp;
LED_QueuePageFlip = false;
}
void LED_InitShiftRegister(void)
{
RCC->AHBENR |= RCC_AHBENR_GPIOFEN;
GPIOF->ODR &= ~(1 << PIN_ROW_SCK) & ~(1 << PIN_ROW_DATA);
GPIOF->MODER = (GPIOF->MODER
& ~(0x3 << PIN_ROW_SCK * 2) & ~(0x3 << PIN_ROW_DATA * 2))
| (0x1 << PIN_ROW_SCK * 2) | (0x1 << PIN_ROW_DATA * 2);
// Reset the shift register. Since RCK and SCK are shorted together, one
// additional clock cycle is needed.
GPIOF->BSRR = (1 << PIN_ROW_DATA);
for(int i = 0; i < LED_ROWS + 1; i++)
{
LED_PulseRowClock();
}
// All shift register outputs are now '1'. Because the rows are driven with
// external transistors, this means all rows are off.
}
void LED_Init(void)
{
RCC->AHBENR |= RCC_AHBENR_GPIOAEN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
// Fill both DMA buffers
LED_QueuePageFlip = false;
LED_Commit();
LED_PageFlip();
LED_Commit();
LED_PageFlip();
GPIOA->ODR |= LED_ODR_MASK;
GPIOA->PUPDR &= ~LED_MODER_MASK;
GPIOA->OTYPER |= LED_ODR_MASK;
GPIOA->OSPEEDR |= LED_MODER_MASK;
GPIOA->MODER = (GPIOA->MODER & ~LED_MODER_MASK) | LED_MODER;
TIM3->CR1 = 0x0000;
TIM3->PSC = 0;
// CH1 will be used for DMA requests updating ARR
TIM3->CCMR1 = TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1;
TIM3->CCER = TIM_CCER_CC1E;
TIM3->CCR1 = 1;
// DMA channel 3: Output data to port a on TIM3 update
DMA1_Channel3->CPAR = (uint32_t)&(GPIOA->ODR);
// DMA channel 4: Update TIM3 ARR on TIM3 CH1 (which is set to 0)
DMA1_Channel4->CPAR = (uint32_t)&(TIM3->ARR);
NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
LED_StartBCM(0);
}
void LED_Suspend(void)
{
LED_SuspendFlag = true;
while(LED_SuspendFlag);
// Disable timer and DMA channels
TIM3->CR1 = 0x0000;
TIM3->DIER = 0x0000;
TIM3->CNT = 0;
DMA1->IFCR = DMA_IFCR_CTCIF3;
DMA1_Channel3->CCR = 0x0000;
DMA1_Channel4->CCR = 0x0000;
NVIC_DisableIRQ(DMA1_Channel2_3_IRQn);
NVIC_ClearPendingIRQ(DMA1_Channel2_3_IRQn);
// Deactivate all rows and columns
GPIOA->BSRR = LED_ODR_MASK;
GPIOF->BSRR = (1 << PIN_ROW_DATA);
for(int i = 0; i < LED_ROWS + 1; i++)
{
LED_PulseRowClock();
}
// Disable timer and DMA clocks
RCC->AHBENR &= ~RCC_AHBENR_DMA1EN;
RCC->APB1ENR &= ~RCC_APB1ENR_TIM3EN;
}
void LED_WakeUp(void)
{
LED_Init();
}
void DMA1_Channel2_3_IRQHandler(void)
{
// Interrupt when all bits have been sent
DMA1->IFCR = DMA_IFCR_CTCIF3;
static int current_row = 0;
current_row++;
if(current_row >= LED_ROWS)
{
GPIOF->BRR = 1 << PIN_ROW_DATA;
current_row = 0;
LED_PulseRowClock();
GPIOF->BSRR = 1 << PIN_ROW_DATA;
if(LED_QueuePageFlip)
{
LED_PageFlip();
}
LED_FrameFlag = true;
}
else
{
LED_PulseRowClock();
}
if(LED_SuspendFlag)
{
LED_SuspendFlag = false;
return;
}
// Start sending bits out again. The row offset caused by the shift
// register "lagging" one clock cycle behind because RCK and SCK are
// connected to the same signal doesn't matter here: we're not paying much
// attention to which rows are which anyway.
LED_StartBCM(current_row);
}