Add meaningful colour struct, double buffering

This commit is contained in:
fruchti 2019-12-22 22:52:01 +01:00
parent bc062dac9b
commit fff3b133c1
4 changed files with 93 additions and 15 deletions

View file

@ -1 +1 @@
129 137

View file

@ -1,6 +1,9 @@
#include "led.h" #include "led.h"
#include "stm32f030x6.h" #include "stm32f030x6.h"
LED_Colour_t LED_PixelData[LED_ROWS * LED_COLUMNS / 3] = {{0}};
volatile bool LED_FrameFlag = false;
#define LED_ODR_MASK ((1 << PIN_LED_R_0) | (1 << PIN_LED_G_0) \ #define LED_ODR_MASK ((1 << PIN_LED_R_0) | (1 << PIN_LED_G_0) \
| (1 << PIN_LED_B_0) | (1 << PIN_LED_R_1) \ | (1 << PIN_LED_B_0) | (1 << PIN_LED_R_1) \
| (1 << PIN_LED_G_1) | (1 << PIN_LED_B_1) \ | (1 << PIN_LED_G_1) | (1 << PIN_LED_B_1) \
@ -22,8 +25,6 @@
| (1 << PIN_LED_B_2 * 2) | (1 << PIN_LED_R_3 * 2) \ | (1 << PIN_LED_B_2 * 2) | (1 << PIN_LED_R_3 * 2) \
| (1 << PIN_LED_G_3 * 2) | (1 << PIN_LED_B_3 * 2)) | (1 << PIN_LED_G_3 * 2) | (1 << PIN_LED_B_3 * 2))
uint8_t LED_Data[LED_ROWS][LED_COLUMNS] = {{0}};
// TIM3 is clocked by APB1 and thus receives only half the system clock. The 4 // TIM3 is clocked by APB1 and thus receives only half the system clock. The 4
// LSBs have bit lengths 2, 4, 8, and 16 cycles and are generated blocking from // LSBs have bit lengths 2, 4, 8, and 16 cycles and are generated blocking from
// an inline assembly block and are thus not in this table. // an inline assembly block and are thus not in this table.
@ -40,15 +41,35 @@ static const int LED_Pins[LED_COLUMNS] =
PIN_LED_R_3, PIN_LED_G_3, PIN_LED_B_3 PIN_LED_R_3, PIN_LED_G_3, PIN_LED_B_3
}; };
static uint16_t LED_DMABuffer[LED_ROWS * (LED_BITS + 1)]; // Number of 16-bit values to be transferred to the GPIO's output register via
// DMA. Each value contains output values for all columns. For each row, a
// value for each bit is needed, plus a constant last transfer to turn all LEDs
// off during the processing time.
#define LED_DMA_BUFFER_LENGTH (LED_ROWS * (LED_BITS + 1))
static void LED_RefreshDMABuffer(void) // Define buffers for double buffering
static uint16_t LED_DMABuffer1[LED_DMA_BUFFER_LENGTH];
static uint16_t LED_DMABuffer2[LED_DMA_BUFFER_LENGTH];
static uint16_t *volatile LED_FrontBuffer = LED_DMABuffer1;
static uint16_t *volatile LED_BackBuffer = LED_DMABuffer2;
// If true, front and back buffers will be swapped after the current frame
static volatile bool LED_QueuePageFlip = false;
void LED_Commit(void)
{ {
// Wait for the current data to be displayed in case LED_Commit was called
// more than one time during a single frame. Otherwise, a race condition
// might occur.
while(LED_QueuePageFlip);
for(int r = 0; r < LED_ROWS; r++) for(int r = 0; r < LED_ROWS; r++)
{ {
for(int i = 0; i < LED_COLUMNS; i++) for(int i = 0; i < LED_COLUMNS; i++)
{ {
uint16_t gamma_corrected = (uint16_t)LED_Data[r][i]; // Use pixel data as a raw byte buffer to get R, G, B in order
uint8_t colour_value = ((uint8_t*)LED_PixelData)[r * LED_COLUMNS + i];
uint16_t gamma_corrected = (uint16_t)colour_value;
gamma_corrected *= gamma_corrected; gamma_corrected *= gamma_corrected;
gamma_corrected >>= 16 - LED_BITS; gamma_corrected >>= 16 - LED_BITS;
@ -56,18 +77,20 @@ static void LED_RefreshDMABuffer(void)
{ {
if(gamma_corrected & (1 << j)) if(gamma_corrected & (1 << j))
{ {
LED_DMABuffer[r * (LED_BITS + 1) + j] &= LED_BackBuffer[r * (LED_BITS + 1) + j] &=
~(1 << LED_Pins[i]); ~(1 << LED_Pins[i]);
} }
else else
{ {
LED_DMABuffer[r * (LED_BITS + 1) + j] |= 1 << LED_Pins[i]; LED_BackBuffer[r * (LED_BITS + 1) + j] |= 1 << LED_Pins[i];
} }
} }
} }
// Data to reset outputs after all data bits are sent // Data to reset outputs after all data bits are sent
LED_DMABuffer[r * (LED_BITS + 1) + LED_BITS] = LED_ODR_MASK; LED_BackBuffer[r * (LED_BITS + 1) + LED_BITS] = LED_ODR_MASK;
} }
LED_QueuePageFlip = true;
} }
static void LED_StartBCM(int row) static void LED_StartBCM(int row)
@ -86,7 +109,7 @@ static void LED_StartBCM(int row)
TIM3->DIER = TIM_DIER_UDE | TIM_DIER_CC1DE; TIM3->DIER = TIM_DIER_UDE | TIM_DIER_CC1DE;
// DMA channel 3: Output data to port a on TIM3 update // DMA channel 3: Output data to port a on TIM3 update
DMA1_Channel3->CMAR = (uint32_t)&(LED_DMABuffer[row * (LED_BITS + 1) + 4]); DMA1_Channel3->CMAR = (uint32_t)&(LED_FrontBuffer[row * (LED_BITS + 1) + 4]);
// One transfer for each bit plus one to set the outputs to zero again. // One transfer for each bit plus one to set the outputs to zero again.
// The first 4 are sent out with assembly before the first DMA transfer. // The first 4 are sent out with assembly before the first DMA transfer.
DMA1_Channel3->CNDTR = LED_BITS + 1 - 4; DMA1_Channel3->CNDTR = LED_BITS + 1 - 4;
@ -137,10 +160,10 @@ static void LED_StartBCM(int row)
"str %[off], [%[odr]];" "str %[off], [%[odr]];"
: :
: [odr] "l" ((uint32_t)&(GPIOA->ODR)), : [odr] "l" ((uint32_t)&(GPIOA->ODR)),
[d0] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 0]), [d0] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 0]),
[d1] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 1]), [d1] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 1]),
[d2] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 2]), [d2] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 2]),
[d3] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 3]), [d3] "r" (LED_FrontBuffer[row * (LED_BITS + 1) + 3]),
[off] "r" (LED_ODR_MASK) [off] "r" (LED_ODR_MASK)
:); :);
@ -156,6 +179,15 @@ static inline void LED_PulseRowClock(void)
GPIOF->BRR = (1 << PIN_ROW_SCK); GPIOF->BRR = (1 << PIN_ROW_SCK);
} }
static inline void LED_PageFlip(void)
{
uint16_t *volatile tmp;
tmp = LED_FrontBuffer;
LED_FrontBuffer = LED_BackBuffer;
LED_BackBuffer = tmp;
LED_QueuePageFlip = false;
}
void LED_Init(void) void LED_Init(void)
{ {
RCC->AHBENR |= RCC_AHBENR_GPIOAEN; RCC->AHBENR |= RCC_AHBENR_GPIOAEN;
@ -163,6 +195,12 @@ void LED_Init(void)
RCC->AHBENR |= RCC_AHBENR_DMA1EN; RCC->AHBENR |= RCC_AHBENR_DMA1EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
// Fill both DMA buffers
LED_Commit();
LED_PageFlip();
LED_Commit();
LED_PageFlip();
GPIOF->ODR &= ~(1 << PIN_ROW_SCK) & ~(1 << PIN_ROW_DATA); GPIOF->ODR &= ~(1 << PIN_ROW_SCK) & ~(1 << PIN_ROW_DATA);
GPIOF->MODER = (GPIOF->MODER GPIOF->MODER = (GPIOF->MODER
& ~(0x3 << PIN_ROW_SCK * 2) & ~(0x3 << PIN_ROW_DATA * 2)) & ~(0x3 << PIN_ROW_SCK * 2) & ~(0x3 << PIN_ROW_DATA * 2))
@ -198,7 +236,6 @@ void LED_Init(void)
NVIC_EnableIRQ(DMA1_Channel2_3_IRQn); NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
LED_RefreshDMABuffer();
LED_StartBCM(0); LED_StartBCM(0);
} }
@ -215,6 +252,11 @@ void DMA1_Channel2_3_IRQHandler(void)
current_row = 0; current_row = 0;
LED_PulseRowClock(); LED_PulseRowClock();
GPIOF->BSRR = 1 << PIN_ROW_DATA; GPIOF->BSRR = 1 << PIN_ROW_DATA;
if(LED_QueuePageFlip)
{
LED_PageFlip();
}
LED_FrameFlag = true;
} }
else else
{ {

View file

@ -1,5 +1,7 @@
#pragma once #pragma once
#include <stdbool.h>
#include "stm32f030x6.h" #include "stm32f030x6.h"
#include "pinning.h" #include "pinning.h"
@ -7,5 +9,22 @@
#define LED_ROWS 8 // Rows are driven by a shift register #define LED_ROWS 8 // Rows are driven by a shift register
#define LED_COLUMNS 12 // Columns are driven by the MCU directly #define LED_COLUMNS 12 // Columns are driven by the MCU directly
typedef struct
{
uint8_t r;
uint8_t g;
uint8_t b;
} __attribute__((packed)) LED_Colour_t;
// Pixel data, not displayed until LED_Commit() is called
extern LED_Colour_t LED_PixelData[LED_ROWS * LED_COLUMNS / 3];
// Is set to true for every frame, can be used for timing or synchronisation
// externally. Will not be set to false within led.c.
extern volatile bool LED_FrameFlag;
void LED_Init(void); void LED_Init(void);
// Display LED_PixelData, starting with the next frame
void LED_Commit(void);

View file

@ -10,8 +10,25 @@ int main(void)
LED_Init(); LED_Init();
int ct = 0;
uint8_t *data = (uint8_t*)LED_PixelData;
while(1) while(1)
{ {
if(LED_FrameFlag)
{
LED_FrameFlag = false;
data[ct]++;
LED_Commit();
if(data[ct] == 255)
{
ct += 3;
if(ct >= LED_COLUMNS * LED_ROWS)
{
ct -= LED_COLUMNS * LED_ROWS;
ct += 1;
}
}
}
} }
return 0; return 0;