Add LED matrix control (12×8)

This commit is contained in:
fruchti 2019-12-22 22:04:05 +01:00
parent dc3ce3a777
commit bc062dac9b
5 changed files with 86 additions and 28 deletions

View file

@ -1 +1 @@
84 129

View file

@ -22,7 +22,7 @@
| (1 << PIN_LED_B_2 * 2) | (1 << PIN_LED_R_3 * 2) \ | (1 << PIN_LED_B_2 * 2) | (1 << PIN_LED_R_3 * 2) \
| (1 << PIN_LED_G_3 * 2) | (1 << PIN_LED_B_3 * 2)) | (1 << PIN_LED_G_3 * 2) | (1 << PIN_LED_B_3 * 2))
uint8_t LED_Data[LED_COUNT] = {0, 63, 200, 255}; uint8_t LED_Data[LED_ROWS][LED_COLUMNS] = {{0}};
// TIM3 is clocked by APB1 and thus receives only half the system clock. The 4 // TIM3 is clocked by APB1 and thus receives only half the system clock. The 4
// LSBs have bit lengths 2, 4, 8, and 16 cycles and are generated blocking from // LSBs have bit lengths 2, 4, 8, and 16 cycles and are generated blocking from
@ -32,7 +32,7 @@ static const uint16_t LED_BitLengths[LED_BITS - 4] =
16, 32, 64, 128, 256, 512, 1024, 2048 16, 32, 64, 128, 256, 512, 1024, 2048
}; };
static const int LED_Pins[LED_COUNT] = static const int LED_Pins[LED_COLUMNS] =
{ {
PIN_LED_R_0, PIN_LED_G_0, PIN_LED_B_0, PIN_LED_R_0, PIN_LED_G_0, PIN_LED_B_0,
PIN_LED_R_1, PIN_LED_G_1, PIN_LED_B_1, PIN_LED_R_1, PIN_LED_G_1, PIN_LED_B_1,
@ -40,32 +40,37 @@ static const int LED_Pins[LED_COUNT] =
PIN_LED_R_3, PIN_LED_G_3, PIN_LED_B_3 PIN_LED_R_3, PIN_LED_G_3, PIN_LED_B_3
}; };
static uint16_t LED_DMABuffer[LED_BITS + 1]; static uint16_t LED_DMABuffer[LED_ROWS * (LED_BITS + 1)];
static void LED_RefreshDMABuffer(void) static void LED_RefreshDMABuffer(void)
{ {
for(int i = 0; i < LED_COUNT; i++) for(int r = 0; r < LED_ROWS; r++)
{ {
uint16_t gamma_corrected = (uint16_t)LED_Data[i] * LED_Data[i]; for(int i = 0; i < LED_COLUMNS; i++)
gamma_corrected >>= 16 - LED_BITS;
for(int j = 0; j < LED_BITS; j++)
{ {
if(gamma_corrected & (1 << j)) uint16_t gamma_corrected = (uint16_t)LED_Data[r][i];
gamma_corrected *= gamma_corrected;
gamma_corrected >>= 16 - LED_BITS;
for(int j = 0; j < LED_BITS; j++)
{ {
LED_DMABuffer[j] &= ~(1 << LED_Pins[i]); if(gamma_corrected & (1 << j))
} {
else LED_DMABuffer[r * (LED_BITS + 1) + j] &=
{ ~(1 << LED_Pins[i]);
LED_DMABuffer[j] |= 1 << LED_Pins[i]; }
else
{
LED_DMABuffer[r * (LED_BITS + 1) + j] |= 1 << LED_Pins[i];
}
} }
} }
// Data to reset outputs after all data bits are sent
LED_DMABuffer[r * (LED_BITS + 1) + LED_BITS] = LED_ODR_MASK;
} }
// Data to reset outputs after all data bits are sent
LED_DMABuffer[LED_BITS] = 0x0000;
} }
static void LED_StartBCM(void) static void LED_StartBCM(int row)
{ {
// Reset DMA and timer // Reset DMA and timer
TIM3->CR1 = 0x0000; TIM3->CR1 = 0x0000;
@ -81,7 +86,7 @@ static void LED_StartBCM(void)
TIM3->DIER = TIM_DIER_UDE | TIM_DIER_CC1DE; TIM3->DIER = TIM_DIER_UDE | TIM_DIER_CC1DE;
// DMA channel 3: Output data to port a on TIM3 update // DMA channel 3: Output data to port a on TIM3 update
DMA1_Channel3->CMAR = (uint32_t)&(LED_DMABuffer[4]); DMA1_Channel3->CMAR = (uint32_t)&(LED_DMABuffer[row * (LED_BITS + 1) + 4]);
// One transfer for each bit plus one to set the outputs to zero again. // One transfer for each bit plus one to set the outputs to zero again.
// The first 4 are sent out with assembly before the first DMA transfer. // The first 4 are sent out with assembly before the first DMA transfer.
DMA1_Channel3->CNDTR = LED_BITS + 1 - 4; DMA1_Channel3->CNDTR = LED_BITS + 1 - 4;
@ -101,7 +106,7 @@ static void LED_StartBCM(void)
| DMA_CCR_DIR | DMA_CCR_EN; | DMA_CCR_DIR | DMA_CCR_EN;
// Send the 4 LSBs, set to zero at the end (so the timing is independent // Send the 4 LSBs, set to zero at the end (so the timing is independent
// from the delay intrudoced by the DMA) // from the delay introduced by the DMA)
__asm__ volatile(".syntax unified\n" __asm__ volatile(".syntax unified\n"
"str %[d0], [%[odr]];" "str %[d0], [%[odr]];"
"str %[d1], [%[odr]];" "str %[d1], [%[odr]];"
@ -132,10 +137,10 @@ static void LED_StartBCM(void)
"str %[off], [%[odr]];" "str %[off], [%[odr]];"
: :
: [odr] "l" ((uint32_t)&(GPIOA->ODR)), : [odr] "l" ((uint32_t)&(GPIOA->ODR)),
[d0] "r" (LED_DMABuffer[0]), [d0] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 0]),
[d1] "r" (LED_DMABuffer[1]), [d1] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 1]),
[d2] "r" (LED_DMABuffer[2]), [d2] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 2]),
[d3] "r" (LED_DMABuffer[3]), [d3] "r" (LED_DMABuffer[row * (LED_BITS + 1) + 3]),
[off] "r" (LED_ODR_MASK) [off] "r" (LED_ODR_MASK)
:); :);
@ -143,13 +148,38 @@ static void LED_StartBCM(void)
TIM3->CR1 = TIM_CR1_ARPE | TIM_CR1_CEN; TIM3->CR1 = TIM_CR1_ARPE | TIM_CR1_CEN;
} }
static inline void LED_PulseRowClock(void)
{
__asm__ volatile("nop");
GPIOF->BSRR = (1 << PIN_ROW_SCK);
__asm__ volatile("nop");
GPIOF->BRR = (1 << PIN_ROW_SCK);
}
void LED_Init(void) void LED_Init(void)
{ {
RCC->AHBENR |= RCC_AHBENR_GPIOAEN; RCC->AHBENR |= RCC_AHBENR_GPIOAEN;
RCC->AHBENR |= RCC_AHBENR_GPIOFEN;
RCC->AHBENR |= RCC_AHBENR_DMA1EN; RCC->AHBENR |= RCC_AHBENR_DMA1EN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
GPIOF->ODR &= ~(1 << PIN_ROW_SCK) & ~(1 << PIN_ROW_DATA);
GPIOF->MODER = (GPIOF->MODER
& ~(0x3 << PIN_ROW_SCK * 2) & ~(0x3 << PIN_ROW_DATA * 2))
| (0x1 << PIN_ROW_SCK * 2) | (0x1 << PIN_ROW_DATA * 2);
// Reset the shift register. Since RCK and SCK are shorted together, one
// additional clock cycle is needed.
GPIOF->BSRR = (1 << PIN_ROW_DATA);
for(int i = 0; i < LED_ROWS + 1; i++)
{
LED_PulseRowClock();
}
// All shift register outputs are now '1'. Because the rows are driven with
// external transistors, this means all rows are off.
GPIOA->ODR |= LED_ODR_MASK; GPIOA->ODR |= LED_ODR_MASK;
GPIOA->PUPDR &= ~LED_MODER_MASK;
GPIOA->OTYPER |= LED_ODR_MASK; GPIOA->OTYPER |= LED_ODR_MASK;
GPIOA->MODER = (GPIOA->MODER & ~LED_MODER_MASK) | LED_MODER; GPIOA->MODER = (GPIOA->MODER & ~LED_MODER_MASK) | LED_MODER;
@ -169,7 +199,7 @@ void LED_Init(void)
NVIC_EnableIRQ(DMA1_Channel2_3_IRQn); NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);
LED_RefreshDMABuffer(); LED_RefreshDMABuffer();
LED_StartBCM(); LED_StartBCM(0);
} }
void DMA1_Channel2_3_IRQHandler(void) void DMA1_Channel2_3_IRQHandler(void)
@ -177,6 +207,23 @@ void DMA1_Channel2_3_IRQHandler(void)
// Interrupt when all bits have been sent // Interrupt when all bits have been sent
DMA1->IFCR = DMA_IFCR_CTCIF3; DMA1->IFCR = DMA_IFCR_CTCIF3;
// Start sending bits out again static int current_row = 0;
LED_StartBCM(); current_row++;
if(current_row >= LED_ROWS)
{
GPIOF->BRR = 1 << PIN_ROW_DATA;
current_row = 0;
LED_PulseRowClock();
GPIOF->BSRR = 1 << PIN_ROW_DATA;
}
else
{
LED_PulseRowClock();
}
// Start sending bits out again. The row offset caused by the shift
// register "lagging" one clock cycle behind because RCK and SCK are
// connected to the same signal doesn't matter here: we're not paying much
// attention to which rows are which anyway.
LED_StartBCM(current_row);
} }

View file

@ -4,7 +4,8 @@
#include "pinning.h" #include "pinning.h"
#define LED_BITS 12 #define LED_BITS 12
#define LED_COUNT 12 #define LED_ROWS 8 // Rows are driven by a shift register
#define LED_COLUMNS 12 // Columns are driven by the MCU directly
void LED_Init(void); void LED_Init(void);

View file

@ -2,6 +2,12 @@
int main(void) int main(void)
{ {
// Delay a bit to make programming easier
for(int i = 0; i < 30000; i++)
{
__asm__ volatile("nop");
}
LED_Init(); LED_Init();
while(1) while(1)

View file

@ -13,3 +13,7 @@
#define PIN_LED_R_3 10 #define PIN_LED_R_3 10
#define PIN_LED_G_3 13 #define PIN_LED_G_3 13
#define PIN_LED_B_3 14 #define PIN_LED_B_3 14
// Port F
#define PIN_ROW_DATA 0 // Shift register data in
#define PIN_ROW_SCK 1 // Shift register clock