inverse_thermal_camera/third_party/fatfs/sdmm.c
2020-05-23 22:11:37 +02:00

562 lines
16 KiB
C

/*------------------------------------------------------------------------/
/ Foolproof MMCv3/SDv1/SDv2 (in SPI mode) control module
/-------------------------------------------------------------------------/
/
/ Copyright (C) 2019, ChaN, all right reserved.
/
/ * This software is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-------------------------------------------------------------------------/
Features and Limitations:
* Easy to Port Bit-banging SPI
It uses only four GPIO pins. No complex peripheral needs to be used.
* Platform Independent
You need to modify only a few macros to control the GPIO port.
* Low Speed
The data transfer rate will be several times slower than hardware SPI.
* No Media Change Detection
Application program needs to perform a f_mount() after media change.
/-------------------------------------------------------------------------*/
#include "ff.h" /* Obtains integer types for FatFs */
#include "diskio.h" /* Common include file for FatFs and disk I/O layer */
/*-------------------------------------------------------------------------*/
/* Platform dependent macros and functions needed to be modified */
/*-------------------------------------------------------------------------*/
#include "stm32f1xx.h"
#include "pinning.h"
#define CS_H() do { GPIOC->BSRR = (1 << PIN_SD_CS); } while(0) /* Set MMC CS "high" */
#define CS_L() do { GPIOC->BRR = (1 << PIN_SD_CS); } while(0) /* Set MMC CS "low" */
#define CK_H() do { GPIOB->BSRR = (1 << PIN_SD_SCK); } while(0) /* Set MMC SCLK "high" */
#define CK_L() do { GPIOB->BRR = (1 << PIN_SD_SCK); } while(0) /* Set MMC SCLK "low" */
#define DI_H() do { GPIOC->BSRR = (1 << PIN_SD_MOSI); } while(0) /* Set MMC DI "high" */
#define DI_L() do { GPIOC->BRR = (1 << PIN_SD_MOSI); } while(0) /* Set MMC DI "low" */
#define DO (!!(GPIOB->IDR & (1 << PIN_SD_MISO))) /* Test MMC DO (high:true, low:false) */
void init_port(void)
{
RCC->APB2ENR |= RCC_APB2ENR_IOPBEN | RCC_APB2ENR_IOPCEN;
CS_H();
GPIOC->CRH = (GPIOC->CRH
& ~(0x0f << (4 * PIN_SD_CS - 32))
& ~(0x0f << (4 * PIN_SD_MOSI - 32)))
| (0x03 << (4 * PIN_SD_CS - 32)) // Output, max. 50 MHz
| (0x03 << (4 * PIN_SD_MOSI - 32)) // Output, max. 50 MHz
;
GPIOB->CRL = (GPIOB->CRL
& ~(0x0f << (4 * PIN_SD_SCK))
& ~(0x0f << (4 * PIN_SD_MISO)))
| (0x03 << (4 * PIN_SD_SCK)) // Output, max. 50 MHz
| (0x04 << (4 * PIN_SD_MISO)) // Input, floating
;
}
void dly_us(UINT n)
{
for(unsigned int i = 0; i < n * 100; i++)
{
__asm__ volatile("nop");
}
}
/*--------------------------------------------------------------------------
Module Private Functions
---------------------------------------------------------------------------*/
/* MMC/SD command (SPI mode) */
#define CMD0 (0) /* GO_IDLE_STATE */
#define CMD1 (1) /* SEND_OP_COND */
#define ACMD41 (0x80+41) /* SEND_OP_COND (SDC) */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */
#define CMD12 (12) /* STOP_TRANSMISSION */
#define CMD13 (13) /* SEND_STATUS */
#define ACMD13 (0x80+13) /* SD_STATUS (SDC) */
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD23 (23) /* SET_BLOCK_COUNT */
#define ACMD23 (0x80+23) /* SET_WR_BLK_ERASE_COUNT (SDC) */
#define CMD24 (24) /* WRITE_BLOCK */
#define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */
#define CMD32 (32) /* ERASE_ER_BLK_START */
#define CMD33 (33) /* ERASE_ER_BLK_END */
#define CMD38 (38) /* ERASE */
#define CMD55 (55) /* APP_CMD */
#define CMD58 (58) /* READ_OCR */
static
DSTATUS Stat = STA_NOINIT; /* Disk status */
static
BYTE CardType; /* b0:MMC, b1:SDv1, b2:SDv2, b3:Block addressing */
/*-----------------------------------------------------------------------*/
/* Transmit bytes to the card (bitbanging) */
/*-----------------------------------------------------------------------*/
static
void xmit_mmc (
const BYTE* buff, /* Data to be sent */
UINT bc /* Number of bytes to send */
)
{
BYTE d;
do {
d = *buff++; /* Get a byte to be sent */
if (d & 0x80) DI_H(); else DI_L(); /* bit7 */
CK_H(); CK_L();
if (d & 0x40) DI_H(); else DI_L(); /* bit6 */
CK_H(); CK_L();
if (d & 0x20) DI_H(); else DI_L(); /* bit5 */
CK_H(); CK_L();
if (d & 0x10) DI_H(); else DI_L(); /* bit4 */
CK_H(); CK_L();
if (d & 0x08) DI_H(); else DI_L(); /* bit3 */
CK_H(); CK_L();
if (d & 0x04) DI_H(); else DI_L(); /* bit2 */
CK_H(); CK_L();
if (d & 0x02) DI_H(); else DI_L(); /* bit1 */
CK_H(); CK_L();
if (d & 0x01) DI_H(); else DI_L(); /* bit0 */
CK_H(); CK_L();
} while (--bc);
}
/*-----------------------------------------------------------------------*/
/* Receive bytes from the card (bitbanging) */
/*-----------------------------------------------------------------------*/
static
void rcvr_mmc (
BYTE *buff, /* Pointer to read buffer */
UINT bc /* Number of bytes to receive */
)
{
BYTE r;
DI_H(); /* Send 0xFF */
do {
r = 0; if (DO) r++; /* bit7 */
CK_H(); CK_L();
r <<= 1; if (DO) r++; /* bit6 */
CK_H(); CK_L();
r <<= 1; if (DO) r++; /* bit5 */
CK_H(); CK_L();
r <<= 1; if (DO) r++; /* bit4 */
CK_H(); CK_L();
r <<= 1; if (DO) r++; /* bit3 */
CK_H(); CK_L();
r <<= 1; if (DO) r++; /* bit2 */
CK_H(); CK_L();
r <<= 1; if (DO) r++; /* bit1 */
CK_H(); CK_L();
r <<= 1; if (DO) r++; /* bit0 */
CK_H(); CK_L();
*buff++ = r; /* Store a received byte */
} while (--bc);
}
/*-----------------------------------------------------------------------*/
/* Wait for card ready */
/*-----------------------------------------------------------------------*/
static
int wait_ready (void) /* 1:OK, 0:Timeout */
{
BYTE d;
UINT tmr;
for (tmr = 5000; tmr; tmr--) { /* Wait for ready in timeout of 500ms */
rcvr_mmc(&d, 1);
if (d == 0xFF) break;
dly_us(100);
}
return tmr ? 1 : 0;
}
/*-----------------------------------------------------------------------*/
/* Deselect the card and release SPI bus */
/*-----------------------------------------------------------------------*/
static
void deselect (void)
{
BYTE d;
CS_H(); /* Set CS# high */
rcvr_mmc(&d, 1); /* Dummy clock (force DO hi-z for multiple slave SPI) */
}
/*-----------------------------------------------------------------------*/
/* Select the card and wait for ready */
/*-----------------------------------------------------------------------*/
static
int select (void) /* 1:OK, 0:Timeout */
{
BYTE d;
CS_L(); /* Set CS# low */
rcvr_mmc(&d, 1); /* Dummy clock (force DO enabled) */
if (wait_ready()) return 1; /* Wait for card ready */
deselect();
return 0; /* Failed */
}
/*-----------------------------------------------------------------------*/
/* Receive a data packet from the card */
/*-----------------------------------------------------------------------*/
static
int rcvr_datablock ( /* 1:OK, 0:Failed */
BYTE *buff, /* Data buffer to store received data */
UINT btr /* Byte count */
)
{
BYTE d[2];
UINT tmr;
for (tmr = 1000; tmr; tmr--) { /* Wait for data packet in timeout of 100ms */
rcvr_mmc(d, 1);
if (d[0] != 0xFF) break;
dly_us(100);
}
if (d[0] != 0xFE) return 0; /* If not valid data token, return with error */
rcvr_mmc(buff, btr); /* Receive the data block into buffer */
rcvr_mmc(d, 2); /* Discard CRC */
return 1; /* Return with success */
}
/*-----------------------------------------------------------------------*/
/* Send a data packet to the card */
/*-----------------------------------------------------------------------*/
static
int xmit_datablock ( /* 1:OK, 0:Failed */
const BYTE *buff, /* 512 byte data block to be transmitted */
BYTE token /* Data/Stop token */
)
{
BYTE d[2];
if (!wait_ready()) return 0;
d[0] = token;
xmit_mmc(d, 1); /* Xmit a token */
if (token != 0xFD) { /* Is it data token? */
xmit_mmc(buff, 512); /* Xmit the 512 byte data block to MMC */
rcvr_mmc(d, 2); /* Xmit dummy CRC (0xFF,0xFF) */
rcvr_mmc(d, 1); /* Receive data response */
if ((d[0] & 0x1F) != 0x05) /* If not accepted, return with error */
return 0;
}
return 1;
}
/*-----------------------------------------------------------------------*/
/* Send a command packet to the card */
/*-----------------------------------------------------------------------*/
static
BYTE send_cmd ( /* Returns command response (bit7==1:Send failed)*/
BYTE cmd, /* Command byte */
DWORD arg /* Argument */
)
{
BYTE n, d, buf[6];
if (cmd & 0x80) { /* ACMD<n> is the command sequense of CMD55-CMD<n> */
cmd &= 0x7F;
n = send_cmd(CMD55, 0);
if (n > 1) return n;
}
/* Select the card and wait for ready except to stop multiple block read */
if (cmd != CMD12) {
deselect();
if (!select()) return 0xFF;
}
/* Send a command packet */
buf[0] = 0x40 | cmd; /* Start + Command index */
buf[1] = (BYTE)(arg >> 24); /* Argument[31..24] */
buf[2] = (BYTE)(arg >> 16); /* Argument[23..16] */
buf[3] = (BYTE)(arg >> 8); /* Argument[15..8] */
buf[4] = (BYTE)arg; /* Argument[7..0] */
n = 0x01; /* Dummy CRC + Stop */
if (cmd == CMD0) n = 0x95; /* (valid CRC for CMD0(0)) */
if (cmd == CMD8) n = 0x87; /* (valid CRC for CMD8(0x1AA)) */
buf[5] = n;
xmit_mmc(buf, 6);
/* Receive command response */
if (cmd == CMD12) rcvr_mmc(&d, 1); /* Skip a stuff byte when stop reading */
n = 10; /* Wait for a valid response in timeout of 10 attempts */
do
rcvr_mmc(&d, 1);
while ((d & 0x80) && --n);
return d; /* Return with the response value */
}
/*--------------------------------------------------------------------------
Public Functions
---------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------*/
/* Get Disk Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE drv /* Drive number (always 0) */
)
{
if (drv) return STA_NOINIT;
return Stat;
}
/*-----------------------------------------------------------------------*/
/* Initialize Disk Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE drv /* Physical drive nmuber (0) */
)
{
BYTE n, ty, cmd, buf[4];
UINT tmr;
DSTATUS s;
if (drv) return RES_NOTRDY;
dly_us(10000); /* 10ms */
init_port();
for (n = 10; n; n--) rcvr_mmc(buf, 1); /* Apply 80 dummy clocks and the card gets ready to receive command */
ty = 0;
if (send_cmd(CMD0, 0) == 1) { /* Enter Idle state */
if (send_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */
rcvr_mmc(buf, 4); /* Get trailing return value of R7 resp */
if (buf[2] == 0x01 && buf[3] == 0xAA) { /* The card can work at vdd range of 2.7-3.6V */
for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state (ACMD41 with HCS bit) */
if (send_cmd(ACMD41, 1UL << 30) == 0) break;
dly_us(1000);
}
if (tmr && send_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */
rcvr_mmc(buf, 4);
ty = (buf[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; /* SDv2 */
}
}
} else { /* SDv1 or MMCv3 */
if (send_cmd(ACMD41, 0) <= 1) {
ty = CT_SD1; cmd = ACMD41; /* SDv1 */
} else {
ty = CT_MMC; cmd = CMD1; /* MMCv3 */
}
for (tmr = 1000; tmr; tmr--) { /* Wait for leaving idle state */
if (send_cmd(cmd, 0) == 0) break;
dly_us(1000);
}
if (!tmr || send_cmd(CMD16, 512) != 0) /* Set R/W block length to 512 */
ty = 0;
}
}
CardType = ty;
s = ty ? 0 : STA_NOINIT;
Stat = s;
deselect();
return s;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE drv, /* Physical drive nmuber (0) */
BYTE *buff, /* Pointer to the data buffer to store read data */
LBA_t sector, /* Start sector number (LBA) */
UINT count /* Sector count (1..128) */
)
{
BYTE cmd;
DWORD sect = (DWORD)sector;
if (disk_status(drv) & STA_NOINIT) return RES_NOTRDY;
if (!(CardType & CT_BLOCK)) sect *= 512; /* Convert LBA to byte address if needed */
cmd = count > 1 ? CMD18 : CMD17; /* READ_MULTIPLE_BLOCK : READ_SINGLE_BLOCK */
if (send_cmd(cmd, sect) == 0) {
do {
if (!rcvr_datablock(buff, 512)) break;
buff += 512;
} while (--count);
if (cmd == CMD18) send_cmd(CMD12, 0); /* STOP_TRANSMISSION */
}
deselect();
return count ? RES_ERROR : RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_write (
BYTE drv, /* Physical drive nmuber (0) */
const BYTE *buff, /* Pointer to the data to be written */
LBA_t sector, /* Start sector number (LBA) */
UINT count /* Sector count (1..128) */
)
{
DWORD sect = (DWORD)sector;
if (disk_status(drv) & STA_NOINIT) return RES_NOTRDY;
if (!(CardType & CT_BLOCK)) sect *= 512; /* Convert LBA to byte address if needed */
if (count == 1) { /* Single block write */
if ((send_cmd(CMD24, sect) == 0) /* WRITE_BLOCK */
&& xmit_datablock(buff, 0xFE))
count = 0;
}
else { /* Multiple block write */
if (CardType & CT_SDC) send_cmd(ACMD23, count);
if (send_cmd(CMD25, sect) == 0) { /* WRITE_MULTIPLE_BLOCK */
do {
if (!xmit_datablock(buff, 0xFC)) break;
buff += 512;
} while (--count);
if (!xmit_datablock(0, 0xFD)) /* STOP_TRAN token */
count = 1;
}
}
deselect();
return count ? RES_ERROR : RES_OK;
}
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE drv, /* Physical drive nmuber (0) */
BYTE ctrl, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
BYTE n, csd[16];
DWORD cs;
if (disk_status(drv) & STA_NOINIT) return RES_NOTRDY; /* Check if card is in the socket */
res = RES_ERROR;
switch (ctrl) {
case CTRL_SYNC : /* Make sure that no pending write process */
if (select()) res = RES_OK;
break;
case GET_SECTOR_COUNT : /* Get number of sectors on the disk (DWORD) */
if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) {
if ((csd[0] >> 6) == 1) { /* SDC ver 2.00 */
cs = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1;
*(LBA_t*)buff = cs << 10;
} else { /* SDC ver 1.XX or MMC */
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
cs = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;
*(LBA_t*)buff = cs << (n - 9);
}
res = RES_OK;
}
break;
case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */
*(DWORD*)buff = 128;
res = RES_OK;
break;
default:
res = RES_PARERR;
}
deselect();
return res;
}