//Copyright 2015 <>< Charles Lohr under the ColorChord License. #include "embeddednf.h" #include #include uint16_t folded_bins[FIXBPERO]; uint16_t fuzzed_bins[FIXBINS]; uint8_t note_peak_freqs[MAXNOTES]; uint16_t note_peak_amps[MAXNOTES]; uint16_t note_peak_amps2[MAXNOTES]; uint8_t note_jumped_to[MAXNOTES]; #ifndef PRECOMPUTE_FREQUENCY_TABLE static const float bf_table[24] = { 1.000000, 1.029302, 1.059463, 1.090508, 1.122462, 1.155353, 1.189207, 1.224054, 1.259921, 1.296840, 1.334840, 1.373954, 1.414214, 1.455653, 1.498307, 1.542211, 1.587401, 1.633915, 1.681793, 1.731073, 1.781797, 1.834008, 1.887749, 1.943064 }; /* The above table was generated using the following code: #include #include int main() { int i; #define FIXBPERO 24 printf( "const float bf_table[%d] = {", FIXBPERO ); for( i = 0; i < FIXBPERO; i++ ) { if( ( i % 6 ) == 0 ) printf( "\n\t" ); printf( "%f, ", pow( 2, (float)i / (float)FIXBPERO ) ); } printf( "};\n" ); return 0; } */ #endif #define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)])) void UpdateFreqs() { #ifndef PRECOMPUTE_FREQUENCY_TABLE uint16_t fbins[FIXBPERO]; int i; BUILD_BUG_ON( sizeof(bf_table) != FIXBPERO*4 ); //Warning: This does floating point. Avoid doing this frequently. If you //absolutely cannot have floating point on your system, you may precompute //this and store it as a table. It does preclude you from changing //BASE_FREQ in runtime. for( i = 0; i < FIXBPERO; i++ ) { float frq = ( bf_table[i] * BASE_FREQ ); fbins[i] = ( 65536.0 ) / ( DFREQ ) * frq * 16 + 0.5; } #else #define PCOMP( f ) (uint16_t)((65536.0)/(DFREQ) * (f * BASE_FREQ) * 16 + 0.5) static const uint16_t fbins[FIXBPERO] = { PCOMP( 1.000000 ), PCOMP( 1.029302 ), PCOMP( 1.059463 ), PCOMP( 1.090508 ), PCOMP( 1.122462 ), PCOMP( 1.155353 ), PCOMP( 1.189207 ), PCOMP( 1.224054 ), PCOMP( 1.259921 ), PCOMP( 1.296840 ), PCOMP( 1.334840 ), PCOMP( 1.373954 ), PCOMP( 1.414214 ), PCOMP( 1.455653 ), PCOMP( 1.498307 ), PCOMP( 1.542211 ), PCOMP( 1.587401 ), PCOMP( 1.633915 ), PCOMP( 1.681793 ), PCOMP( 1.731073 ), PCOMP( 1.781797 ), PCOMP( 1.834008 ), PCOMP( 1.887749 ), PCOMP( 1.943064 ) }; #endif #ifdef USE_32DFT UpdateBins32( fbins ); #else UpdateBinsForProgressiveIntegerSkippyInt( fbins ); #endif } void InitColorChord() { int i; //Set up and initialize arrays. for( i = 0; i < MAXNOTES; i++ ) { note_peak_freqs[i] = 255; note_peak_amps[i] = 0; note_peak_amps2[i] = 0; } memset( folded_bins, 0, sizeof( folded_bins ) ); memset( fuzzed_bins, 0, sizeof( fuzzed_bins ) ); //Step 1: Initialize the Integer DFT. #ifdef USE_32DFT SetupDFTProgressive32(); #else SetupDFTProgressiveIntegerSkippy(); #endif //Step 2: Set up the frequency list. You could do this multiple times //if you want to change the loadout of the frequencies. UpdateFreqs(); } void HandleFrameInfo() { int i, j, k; uint8_t hitnotes[MAXNOTES]; memset( hitnotes, 0, sizeof( hitnotes ) ); #ifdef USE_32DFT uint16_t * strens; UpdateOutputBins32(); strens = embeddedbins32; #else uint16_t * strens = embeddedbins; #endif //Copy out the bins from the DFT to our fuzzed bins. for( i = 0; i < FIXBINS; i++ ) { fuzzed_bins[i] = (fuzzed_bins[i] + (strens[i]>>FUZZ_IIR_BITS) - (fuzzed_bins[i]>>FUZZ_IIR_BITS)); } //Taper first octave for( i = 0; i < FIXBPERO; i++ ) { uint32_t taperamt = (65536 / FIXBPERO) * i; fuzzed_bins[i] = (taperamt * fuzzed_bins[i]) >> 16; } //Taper last octave for( i = 0; i < FIXBPERO; i++ ) { int newi = FIXBINS - i - 1; uint32_t taperamt = (65536 / FIXBPERO) * i; fuzzed_bins[newi] = (taperamt * fuzzed_bins[newi]) >> 16; } //Fold the bins from fuzzedbins into one octave. for( i = 0; i < FIXBPERO; i++ ) folded_bins[i] = 0; k = 0; for( j = 0; j < OCTAVES; j++ ) { for( i = 0; i < FIXBPERO; i++ ) { folded_bins[i] += fuzzed_bins[k++]; } } //Now, we must blur the folded bins to get a good result. //Sometimes you may notice every other bin being out-of //line, and this fixes that. We may consider running this //more than once, but in my experience, once is enough. for( j = 0; j < FILTER_BLUR_PASSES; j++ ) { //Extra scoping because this is a large on-stack buffer. uint16_t folded_out[FIXBPERO]; uint8_t adjLeft = FIXBPERO-1; uint8_t adjRight = 1; for( i = 0; i < FIXBPERO; i++ ) { uint16_t lbin = folded_bins[adjLeft]>>2; uint16_t rbin = folded_bins[adjRight]>>2; uint16_t tbin = folded_bins[i]>>1; folded_out[i] = lbin + rbin + tbin; //We do this funny dance to avoid a modulus operation. On some //processors, a modulus operation is slow. This is cheap. adjLeft++; if( adjLeft == FIXBPERO ) adjLeft = 0; adjRight++; if( adjRight == FIXBPERO ) adjRight = 0; } for( i = 0; i < FIXBPERO; i++ ) { folded_bins[i] = folded_out[i]; } } //Next, we have to find the peaks, this is what "decompose" does in our //normal tool. As a warning, it expects that the values in foolded_bins //do NOT exceed 32767. { uint8_t adjLeft = FIXBPERO-1; uint8_t adjRight = 1; for( i = 0; i < FIXBPERO; i++ ) { int16_t prev = folded_bins[adjLeft]; int16_t next = folded_bins[adjRight]; int16_t this = folded_bins[i]; uint8_t thisfreq = i< this || next > this ) continue; if( prev == this && next == this ) continue; //i is at a peak... int32_t totaldiff = (( this - prev ) + ( this - next )); int32_t porpdiffP = ((this-prev)<<16) / totaldiff; //close to 0 = //closer to this side, 32768 = in the middle, 65535 away. int32_t porpdiffN = ((this-next)<<16) / totaldiff; if( porpdiffP < porpdiffN ) { //Closer to prev. offset = -(32768 - porpdiffP); } else { //Closer to next offset = (32768 - porpdiffN); } //Need to round. That's what that extra +(15.. is in the center. thisfreq += (offset+(1<<(15-SEMIBITSPERBIN)))>>(16-SEMIBITSPERBIN); //In the event we went 'below zero' need to wrap to the top. if( thisfreq > 255-(1< ((1<<(SEMIBITSPERBIN-1))*FIXBPERO) ) { distance = ((1<<(SEMIBITSPERBIN))*FIXBPERO) - distance; } //If we find a note closer to where we are than any of the //others, we can mark it as our desired note. if( distance < closest_note_distance ) { closest_note_id = j; closest_note_distance = distance; } } int8_t marked_note = -1; if( closest_note_distance <= MAX_JUMP_DISTANCE ) { //We found the note we need to augment. note_peak_freqs[closest_note_id] = thisfreq; marked_note = closest_note_id; } //The note was not found. else if( lowest_found_free_note != -1 ) { note_peak_freqs[lowest_found_free_note] = thisfreq; marked_note = lowest_found_free_note; } //If we found a note to attach to, we have to use the IIR to //increase the strength of the note, but we can't exactly snap //it to the new strength. if( marked_note != -1 ) { hitnotes[marked_note] = 1; note_peak_amps[marked_note] = note_peak_amps[marked_note] - (note_peak_amps[marked_note]>>AMP_1_IIR_BITS) + (this>>(AMP_1_IIR_BITS-3)); note_peak_amps2[marked_note] = note_peak_amps2[marked_note] - (note_peak_amps2[marked_note]>>AMP_2_IIR_BITS) + ((this<<3)>>(AMP_2_IIR_BITS)); } } } #if 0 for( i = 0; i < MAXNOTES; i++ ) { if( note_peak_freqs[i] == 255 ) continue; printf( "%d / ", note_peak_amps[i] ); } printf( "\n" ); #endif //Now we need to handle combining notes. for( i = 0; i < MAXNOTES; i++ ) for( j = 0; j < i; j++ ) { //We'd be combining nf2 (j) into nf1 (i) if they're close enough. uint8_t nf1 = note_peak_freqs[i]; uint8_t nf2 = note_peak_freqs[j]; int16_t distance = nf1 - nf2; if( nf1 == 255 || nf2 == 255 ) continue; if( distance < 0 ) distance = -distance; //If it wraps around above the halfway point, then we're closer to it //on the other side. if( distance > ((1<<(SEMIBITSPERBIN-1))*FIXBPERO) ) { distance = ((1<<(SEMIBITSPERBIN))*FIXBPERO) - distance; } if( distance > MAX_COMBINE_DISTANCE ) { continue; } int into; int from; if( note_peak_amps[i] > note_peak_amps[j] ) { into = i; from = j; } else { into = j; from = i; } //We need to combine the notes. We need to move the new note freq //towards the stronger of the two notes. int16_t amp1 = note_peak_amps[into]; int16_t amp2 = note_peak_amps[from]; //0 to 32768 porportional to how much of amp1 we want. uint32_t porp = (amp1<<15) / (amp1+amp2); uint16_t newnote = (nf1 * porp + nf2 * (32768-porp))>>15; //When combining notes, we have to use the stronger amplitude note. //trying to average or combine the power of the notes looks awful. note_peak_freqs[into] = newnote; note_peak_amps[into] = (note_peak_amps[into]>note_peak_amps[from])? note_peak_amps[into]:note_peak_amps[j]; note_peak_amps2[into] = (note_peak_amps2[into]>note_peak_amps2[from])? note_peak_amps2[into]:note_peak_amps2[j]; note_peak_freqs[from] = 255; note_peak_amps[from] = 0; note_jumped_to[from] = i; } //For al lof the notes that have not been hit, we have to allow them to //to decay. We only do this for notes that have not found a peak. for( i = 0; i < MAXNOTES; i++ ) { if( note_peak_freqs[i] == 255 || hitnotes[i] ) continue; note_peak_amps[i] -= note_peak_amps[i]>>AMP_1_IIR_BITS; note_peak_amps2[i] -= note_peak_amps2[i]>>AMP_2_IIR_BITS; //In the event a note is not strong enough anymore, it is to be //returned back into the great pool of unused notes. if( note_peak_amps[i] < MINIMUM_AMP_FOR_NOTE_TO_DISAPPEAR ) { note_peak_freqs[i] = 255; note_peak_amps[i] = 0; note_peak_amps2[i] = 0; } } //We now have notes!!! #if 0 for( i = 0; i < MAXNOTES; i++ ) { if( note_peak_freqs[i] == 255 ) continue; printf( "(%3d %4d %4d) ", note_peak_freqs[i], note_peak_amps[i], note_peak_amps2[i] ); } printf( "\n") ; #endif #if 0 for( i = 0; i < FIXBPERO; i++ ) { printf( "%4d ", folded_bins[i] ); } printf( "\n" ); #endif }